

Discovery of Superconductivity in Hg su

Small magnetic field suppresses Superconductivity

Free electrons model in metal

Electron Gas or Liquid in Metals

In model (b) where cubic box has a volume V=L³, Schrödinger equation is given by

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\psi(\mathbf{r})+V(\mathbf{r})\,\psi(\mathbf{r})=\varepsilon\psi(\mathbf{r})$$

Here.

$$V(\mathbf{r}) = \begin{cases} 0 & 0 < x, y, z < L \\ \infty & \text{otherwise} \end{cases}$$

Using a periodic boundary condition $\psi(x+L, y, z) = \psi(x, y+L, z) = \psi(x, y, z+L) = \psi(x, y, z+L)$

 $\psi(x, y, z)$

We obtain a following plane-wave function :

 $\psi(\mathbf{r}) = \frac{1}{\sqrt{I^3}} e^{i\mathbf{k}\cdot\mathbf{r}}$

With eigen energy :
$$\varepsilon(k) = \frac{\hbar k^2}{2m} = \frac{\hbar^2}{2m} (k_x^2 + k_y^2 + k_z^2)$$

where wave numbers

are quantized as follow: $k_x = \frac{2\pi}{L} n_x$, $k_y = \frac{2\pi}{L} n_y$, $k_z = \frac{2\pi}{L} n_z$ $n_r, n_u, n_z = 0, \pm 1, \pm 2, \cdots$

Density of states, $D(\varepsilon)$ per unit volume(cm³) is defined as number of states in between ε and $\varepsilon + d\varepsilon$.

Since two electrons with spin-up and-down exist in kspace volume $(2\pi/L)^3$, number of states per unit volume in k-space is $2 \times (L/2\pi)^3$

$$k_x = \frac{2\pi}{L} n_x, \qquad k_y = \frac{2\pi}{L} n_y, \qquad k_z = \frac{2\pi}{L} n_z$$
$$n_x, n_y, n_z = 0, \pm 1, \pm 2, \cdots$$

 $k_{\tau}=0$ surface k, ************* $\underline{D_{3D}(\varepsilon) d\varepsilon} = \frac{1}{L^3} \times 2 \times \frac{L^3}{(2\pi)^3} \times 4\pi k^2 \frac{dk}{d\varepsilon} d\varepsilon$ $k_{\rm v}$ $4\pi k^2 dk$

Using $\varepsilon = h^2 k^2 / 2m$, the above equation is rewritten as the function of ε

$$D_{3D}(\varepsilon) d\varepsilon = \frac{2}{(2\pi)^3} 4\pi k^2 \frac{dk}{d\varepsilon} d\varepsilon \qquad \frac{d\varepsilon}{dk} = \frac{\hbar^2 k}{m}$$
$$= \frac{m}{\pi^2 \hbar^2} k d\varepsilon \qquad k = \frac{\sqrt{2m\varepsilon}}{\hbar}$$
$$= \frac{\sqrt{2} m^{3/2}}{\pi^2 \hbar^3} \sqrt{\varepsilon} d\varepsilon$$

n-dependence of electron's wave length in cubic box

Mechanism of formation of electron pairs due to lattice vibration

電子間に引力が働く機構の模式図 図12

Provided that attractive interaction works between electrons near the Fermi level, electrons are always bounded making pairs - Cooper pairs -. In order to prove this theorem, we deal with a simple case where two electrons are added on the Fermi sea as illustrated below.

Concept for Superconductivity

We deal with a following Schrödinger equation for two electrons with attractive potential $V(r_1, r_2)$;

$$-\frac{\hbar^{2}}{2m}(\nabla_{1}^{2}+\nabla_{2}^{2})+V(\mathbf{r}_{1},\mathbf{r}_{2})\bigg]\psi(\mathbf{r}_{1},\mathbf{r}_{2})=E\psi(\mathbf{r}_{1},\mathbf{r}_{2}) \qquad (11.9)$$

In case of $V(\mathbf{r}_1, \mathbf{r}_2) = \mathbf{0}$, the wave function with a lowest energy at zero total momentum is described by the following formula;

$$\psi(\mathbf{r}_{1},\mathbf{r}_{2}) = \frac{1}{L^{3/2}} e^{i\mathbf{k}\cdot\mathbf{r}_{1}} \frac{1}{L^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{r}_{2}} = \frac{1}{L^{3}} e^{i\mathbf{k}\cdot\langle\mathbf{r}_{1}-\mathbf{r}_{2}\rangle}$$
(11.10)

Then, for $V(\mathbf{r}_1, \mathbf{r}_2) \neq 0$ a wave function is expressed as follow;

$$\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{L^3} \sum_{|\mathbf{k}| > k_F} A_{\mathbf{k}} e^{i\mathbf{k} \cdot (\mathbf{r}_1 - \mathbf{r}_2)}$$
(11.11)

Note that since this wave function is symmetric in orbital sector, the spin function is in anti-symmetric spin-singlet state.

Inserting (11.11) into (11.9) and using, $V_{\mathbf{k}} \equiv \int V(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$

$$(E-2\varepsilon_{\mathbf{k}})A_{\mathbf{k}} = \sum_{|\mathbf{k}'| > k_{\mathbf{k}}} V_{\mathbf{k}-\mathbf{k}'}A_{\mathbf{k}}$$
(11.12)

We can derive this eigen equation.

When the eigen energy in the eq. (11.12) has a solution for E $< 2\varepsilon_{F}$, two- electron bounded state (Cooper pair) is formed. Provided that $V(\mathbf{r}_1, \mathbf{r}_2)$ is approximated as follows;

$$V_{\mathbf{k}-\mathbf{k}'} = \begin{cases} \text{const} = V < 0 & |\varepsilon_{\mathbf{k}} - \varepsilon_{F}|, |\varepsilon_{\mathbf{k}'} - \varepsilon_{F}| < \hbar \omega_{D} \\ 0 & \text{otherwise} \end{cases}$$
(11.13)

Here, if the constant attractive interaction V is assumed to be effective only among electrons within energies in the range between the Fermi energy $\varepsilon_{\rm F}$ and the Debye energy $\hbar \omega_D$ thich is the highest one of lattice vibration, we obtain the following equation;

$$(E-2\varepsilon_{\mathbf{k}})A_{\mathbf{k}} = -|V|\sum_{|\mathbf{k}'|>k_{\mathbf{k}}}A_{\mathbf{k}}$$
(11.14)

When taking $A \equiv \sum_{|\mathbf{k}'| > k_{\mathbf{k}}} A_{\mathbf{k}}$, form (11.14) we have $A_{\mathbf{k}} = -\frac{|V|}{E - 2\varepsilon_{\mathbf{k}}} A \subset A$

Since
$$A = A |V| \sum_{0 < (\varepsilon_k - \varepsilon_r) < \hbar \omega_p} \frac{1}{2\varepsilon_k - E}$$
, we obtain the following relation

$$\frac{1}{|V|} = \sum_{\substack{\mathbf{k} \\ 0 < (\varepsilon_{\mathbf{k}} - \varepsilon_{F}) < \hbar \omega_{D}}} \frac{1}{2\varepsilon_{\mathbf{k}} - E}$$
(11.15)

$$\frac{1}{|V|} = \int_{\varepsilon_F}^{\varepsilon_F + \hbar\omega_D} \frac{1}{2\varepsilon - E} N(\varepsilon) d\varepsilon$$
$$\approx N(\varepsilon_F) \int_{\varepsilon_F}^{\varepsilon_F + \hbar\omega_D} \frac{1}{2\varepsilon - E} d\varepsilon$$
$$= \frac{1}{2} N(\varepsilon_F) \ln\left(\frac{2\varepsilon_F - E + 2\hbar\omega_D}{2\varepsilon_F - E}\right)$$

$N(\varepsilon_F) | V | \ll 1$ is considered and as a result

we obtain the eigen energy as $E \approx 2 arepsilon_F - 2 \hbar \omega_D e^{-2/N(arepsilon_F)|V|}$

Superconductivity

(a) N(E) $E_{\rm F}$ (b) $_{N(E)}$ $2\varDelta$ $E_{\rm F}$

It was proved that electrons near the Fermi surface are bounded making pairs of (\mathbf{k}, \uparrow) and $(-\mathbf{k}, \downarrow)$ -Cooper pair- via the attractive interaction mediated by lattice vibration with highest energy -Debye energy $\hbar \omega_{D}$ - . Here the Cooper pair is in the zero total momentum and the spin-singlet state.

Since Cooper pairs are formed by many body of electrons near the Fermi level, these are condensed into a macroscopic quantum state which is regarded as a Bose condensation. This outstanding aspect of superconductivity was theoretically clarified by Bardeen, Cooper and Schriefer, and hence this theory is called as BCS theory which is epoch-making event in condensed matter physics in the 20th century.

In this BCS state, an isotropic energy gap Δ opens on the Fermi level, yielding a perfect diamagnetism called Meissner effect and zeroresistance effect.

液体窒素温度を超える高温超伝導体

金属の超伝導を解明したBCS理論 では、高温超伝導を説明できない。

それに代わる理論も、発見後、25 年経った現在も、決定的なものは 現れていなかった。

Why T_c is so high?

Quasi-particle DOS in SC state

Spin susceptibility

Spin polarization in superconducting phase

Spin triplet pairing:

Spin susceptibility

Spin polarization in superconducting phase

Spin singlet pairing:

- breaking up of Cooper pairs
- decrease of spin susceptibility • vanishing susceptibility at T=0

$\chi_{\rm s} = 2\mu_{\rm B}^2 N_0 Y(T),$

where Y(T) is the Yosida function defined by³⁸⁾

$$Y(T) = -\frac{2}{N_0} \int_0^\infty N_{\rm BCS}(\varepsilon) \,\frac{{\rm d}f(\varepsilon)}{{\rm d}\varepsilon} \,{\rm d}\varepsilon,$$

Spin triplet pairing:

• polarization without pair breaking no reduction of spin susceptibility for equal-spin pairing

$$\chi = \text{const.}$$
 for $\vec{d}(\vec{k}) \cdot \vec{H} = 0$

 T_c

Т

Summary2 : pairing state in unconventional superconductors

Possible SC order parameters and their spin-state

Line-nodes gap SC in correlated electrons SC

Spin-fluctuations mediated d-wave superconductivity

When the eigen energy in the eq. (11.12) has a solution for E < $2\varepsilon_F$, two- electron bounded state (Cooper pair) is formed. Provided that $V(\mathbf{r}_1, \mathbf{r}_2)$ is approximated as follows;

$$V_{\mathbf{k}-\mathbf{k}'} = \begin{cases} \text{const} = V < 0 & |\varepsilon_{\mathbf{k}} - \varepsilon_{F}|, |\varepsilon_{\mathbf{k}'} - \varepsilon_{F}| < \hbar \omega_{D} \\ 0 & \text{otherwise} \end{cases}$$
(11.13)

Here, if the constant attractive interaction *V* is assumed to be effective only among electrons within energies in the range between the Fermi energy ε_F and the Debye energy $\hbar \omega_D$ thich is the highest one of lattice vibration, we obtain the following equation;

$$(E-2\varepsilon_{\mathbf{k}})A_{\mathbf{k}} = -|V|\sum_{|\mathbf{k}'|>k_{\mathbf{k}}}A_{\mathbf{k}}$$
(11.14)

When taking $A \equiv \sum_{|\mathbf{k}'| > k_F} A_{\mathbf{k}}$, form (11.14) we have $A_{\mathbf{k}} = -\frac{|V|}{E - 2\varepsilon_{\mathbf{k}}} A \subset \mathcal{A}$

Since $A = A |V| \sum_{0 < (\varepsilon_k - \varepsilon_r) < \hbar \omega_p} \frac{1}{2\varepsilon_k - E}$, we obtain the following relation

$$\frac{1}{|V|} = \sum_{\substack{\mathbf{k} \\ 0 \le (\varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{f}}) \le \hbar \omega_{\mathbf{p}}}} \frac{1}{2\varepsilon_{\mathbf{k}} - E}$$
(11.15)

Possible SC order parameters and their spin-state

NMR/NQR probes of emergent properties in correlated-electron superconductors

- · Symmetry of the Cooper pair of either spin-singlet or spin-triplet
- SC gap with either isotropic or nodal structure
- Characters of spin fluctuations