On Pairing Glues in Strongly Correlated Superconductors

Frontier of Superconducting Phenomena

Effective atomic potentials for Ce and U

	T(V)	annut al atau ataua		1 /T	V*	and the second second	
15.00.05	$I_c(\mathbf{K})$	crystal structure	nucleus	$1/I_1$	N N	parity	symmetry
$CeCu_2Si_2^{17,22-25}$	$\sim 0.7 \text{ K}$	tetragonal(ThCr ₂ Si ₂)	Cu, $Si^{26,27}$	T^3	decrease	even	d
CeCoIn5 ^{20, 21)}	$\sim 2.3 \text{ K}$	tetragonal(HoCoGa ₅)	Co, In ²⁸⁾	T^3	decrease	even	d
CeIrIn5 ^{20, 21)}	$\sim 0.4~{ m K}$	tetragonal(HoCoGa ₅)	In ²⁹⁾	T^3	-	-	-
$UBe_{13}^{18, 19)}$	$\sim 0.9 \ { m K}$	$cubic(NaZn_{13})$	Be^{30}	T^3	-	-	-
UPt ₃ ^{18, 19)}	\sim 0.55 K	hexagonal	$Pt^{31-34)}$	T^3	unchange	odd	p or f
URu ₂ Si ₂ ^{18, 19)}	$\sim 1.2 \text{ K}$	tetragonal(ThCr ₂ Si ₂)	Ru, Si ^{35, 36)}	T^3	unchange	odd	
UNi ₂ Al ₃ ^{18, 19)}	$\sim 1 \text{ K}$	hexagonal	A1 ³⁷)	T^3	unchange	odd	p or f
UPd ₂ Al ₃ ^{18, 19)}	$\sim 2 \text{ K}$	hexagonal	Pd, Al ^{38, 39)}	T^3	decrease	even	d
$CeCu_2Ge_2^{40}$	~ 0.6 K ($P \sim 7.6$ GPa)	tetragonal(ThCr ₂ Si ₂)	-	-	-	-	-
$CeIn_3^{41-45}$	\sim 0.2 K ($P\sim\!\!2.5$ GPa)	cubic(AuCu ₃)	$In^{46)}$	T^3	-	-	-
$CePd_2Si_2^{41, 42, 47}$	\sim 0.4 K ($P\sim\!\!2.5$ GPa)	$tetragonal(ThCr_2Si_2)$	-	-	-	-	-
$CeRh_2Si_2^{48,49}$	~ 0.2 K ($P \sim 1.0$ GPa)	$tetragonal(ThCr_2Si_2)$	-	-	-	-	-
$CeRhIn_5^{50,51}$	\sim 2.1 K ($P\sim\!\!1.6$ GPa)	$\rm tetragonal(HoCoGa_5)$	$In^{52, 53)}$	T^3	-	-	-
High- T_c cuprates	~ 140 K (max)	perovskite	Cu, O	T^3	decrease	even	d
$Sr_2RuO_4^{54,55}$	$\sim 1.5 \text{ K}$	perovskite	Ru, O	T^3	unchange	odd	р

Table I. Superconducting characteristics in most heavy-fermion systems along with high- T_c cupper oxides and Sr₂RuO₄. Note that the nuclear relaxation rate $1/T_1$ reveals no coherence peak just below T_c , followed by the T^3 dependence without an exception. K^* denotes the spin component of Knight shift below T_c . In this context, all unconventional superconductors discovered to date possess the line-node gap on the Fermi surface regardless of either spin-singlet d wave or spin-triplet p-wave.

Reference: JPSJ, 74 (2005) 186-199."Unconventional SC in HFs"

Superconductivity:
Cooper pairImage: Source spin singletImage: Source spin singlet</t

Symmetry of Cooper Pairs

Pair wavefunction:

$$F_{ss'}(\vec{k}) = \langle \hat{c}_{\vec{k}s} \hat{c}_{-\vec{k}s'} \rangle = \underbrace{\Phi(\vec{k})}_{\text{orbital}} \underbrace{\chi(s,s')}_{\text{spin}}$$

totally antisymmetric under electron exchange

$$\vec{k} \rightarrow -\vec{k} \qquad s \leftrightarrow s'$$

even parity L = 0, 2, 4,	$\Phi(-\vec{k}) = \Phi(\vec{k})$	\rightarrow	S=0 singlet
odd parity L = 1 ,3 ,5,	$\Phi(-\vec{k}) = -\Phi(\vec{k})$	\rightarrow	S=1 triplet

Magnetic fluctuations mediated SC mechanism

Ferromagnetic case

Antiferromagnetic case

Energy gap structure of unconventional SC

7-3図 BW, ABM, ポーラー状態に対するエネルギーギャップの様子

Coexisting phases of AFM and SC

Longitudinal fluctuations of ordered moments mediate Cooper pairs ?

Microscopic evidence for *AFM* + dSC from ¹⁹F-NMR

Energy gap probed by ARPES on n = 4 compounds

ARPES : Evidence for two-gap behaviors in underdoped regime

Experiment : Phase Diagram of M_{AF} and Δ_{SC} vs p at 1.5 K

Summary for HTSC

Quantum and Thermal Fluctuations suppress the onset of static AFM order and hence may cause fluctuations of SC order parameter's amplitude and phase

52

ODLRO, C

Summary of this talk

	CuO ₂ systems	HFS		
Mother compound	AFM-Mott Insulators with T _N ~ 500 K	Antiferromagnets Ferromagnets Multiple orders		
Phase diagram	Carrier doping	Pressure Chemical substitution		
Electronic state	Single band	Multibands		
SC order parameter	d-wave T _c = 135 K	d-wave, odd parity (triplet), non-unitary, hybrid-type, extend s-wave		
Attractive interaction	AFM Interaction	Magnetic (density) fluctuations, Valence ones, Quadruple ones, Magnetic excitons, Multiple scattering effect due to on-site U		