Introduction to Magnetism

Hamiltonian in Magnetic Substances

$$H = -2J \Sigma_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

J < 0 (in case of wave functions mixed)

: Antiferromagnetism

J > 0 (in case of wave functions being orthgonalized)

: Ferromagnetism

Model Hamiltonian for Strongly Correlated Electrons Systems

$$t_{ij} = \int e_j^{i}(f) \left[-\frac{1}{2m} - \frac{e_j^{i}}{R_i} - \frac{e_j^{i}}{R_j} \right]$$

$$e_i^{i}(f) + \frac{1}{R_i} + \frac{e_i^{i}(f)}{R_i} + \frac{U}{R_i} + \frac{$$

(6-2) In order to improve the HL wave function;

$$\varPhi_{\rm HL} = \frac{1}{\sqrt{2(1+S^2)}} [\phi_a(1)\phi_b(2) + \phi_b(1)\phi_a(2)]$$

We incorporate the following states, using $\phi_a(1) \phi_a(2)$ and $\phi_b(1) \phi_b(2)$

$$\Phi' = \frac{1}{\sqrt{2}} [\phi_a(1)\phi_a(2) + \phi_b(1)\phi_b(2)]$$

Then, the improved trial wave function is expressed by $\boldsymbol{\varphi} = c_1 \boldsymbol{\varphi}_{HL} + c_2 \boldsymbol{\varphi}^*$. Show how to get the following relation and solve an eigen energy for this state

$$\begin{vmatrix} 2\varepsilon + U_1 + J' - E & 2t \\ 2t & 2\varepsilon + U_0 + J' - E \end{vmatrix} = 0$$

If $U_0 - U_1 > >/t$ / is valid for Mott insulator, show that the eigen energy is given as the follow;

$$E_{\rm HL} = 2\varepsilon + U_1 + J' - \frac{4t^2}{U_0 - U_1}$$

$$\mathcal{H}_{sl} = \sum_{i} \zeta l_{i} \cdot S/n = \zeta / n(\sum_{i} l_{i}) \cdot S = (\zeta / n)L \cdot S$$
$$\lambda = \zeta / n > 0$$
$$n > 2l + 1 : \lambda = -\zeta / (4l + 2 - n) < 0$$
$$n = 2l + 1 : L = 0, S = (2l + 1)/2 \rightarrow H_{sl} = 0$$

表 2-3 スピン軌道相互作用の定数

	電子数	電子状態	λ cm ⁻¹
Ti ³⁺	d^1	2D	154
V ^{a+}	d^2	${}^{3}F$	104
Cr ³⁺	ď	4F	87
Mn ³⁺	ď	5D	85
V ²⁺	ď	4F	55
Cr ²⁺	ď	*D	57
Fe ²⁺	ď	⁵D	100
Co ²⁺	d^{η}	4F	-180
Ni ²⁺	d^8	۶F	335
Cu ²⁺	d*	2 D	828

							J	刮	;	期		表									Б	
нз						(悲)	连状丸	ミのド	中性历	原子の	外帮	٤NC -	子配	27) 27)							ľ	10-
		原	子お	よび	イオ	$\sim \sigma_{c}$	電子會	记置	を示す	计配号	につ	いて	は								4	,²
	Be ⁴	す	~7	の初	步的	な <i>開</i>	(子物)	业学。	の教科	非書に	おい	て逃	<u>い</u> が	BS	C		N7	6) 8	F ⁹	下	ie'
		ら 1年	れて モー	いる ・メン	.文 下0、	子-s 1.2	, p, をも・	a って!	はれくいる?	ビ 平 1立 臣子 を	とり 示す	ຈາ/ . 🗴	011 (字									
24	2#2	Ø	左側	の数	字は	軌辽	。 [の主]	除子道	数をえ	ドす.	右圍	1.0	数	2:22	p 2s ³	2p²	2,122	p ³ 2	s ^z 2p	25-2	p* 2	s*2
N#11	Mg ¹²	李	はる	の軌	j道の	7 7 -7		···· •						Ai	si	14	PIS	s	516	CIT	ľ	(r14
3.	3.12						3 d	遷	移研	兹性	元	茶		3473	p 3s	² 3p ²	3,*3	¹ p ³ 3	3123b	3s²3	p ⁵ 3	ls²3
K19	Ca ²⁰	Sc ²¹	Ti2	2 V2	3 C	r ²⁴	Mn ²⁵	Fe ²⁶	i Co	27 Ni ²	• C	u ²⁹	Zn ³⁰	Ga ³	' G	32	As ³	3 5	5e ³⁴	8r ^{3:}	•	(r ³
45	45²	3d 4s²	3d² 4s²	3d 4s ¹	3	d ³	3d3 4s2	3d ⁶ 4s ²	3d ⁷ 4s ²	3d ⁹ 4s ²	30 41	no '	3d 10 4s²	4524	p 41	² 4p ²	4524	4 r ^p	4s²4p	4s²4	p ³	1s²/
Rb ³⁷	Sr ³⁸	¥39	Zr4	° NI	-1 N	10 ⁴²	Tc13	Ru⁴	1 Rh	15 Pd	16 A	g*"	Cd48	In49	Si	1 ⁵⁰	Sb	1 1	Te ⁵²	153	ŀ	Ke ^s
51	5s²	4d 5s²	4d² 5s²	4d 5s	• 4	43 5	4d ⁶ 5s	4d' 5s	4d 5s	4d	• 4a 5a	1 ¹⁰	4d ¹⁰ 5s ²	5s²5	p 5s	25p2	5 s 25	5p ³ 5	5 s² 5p	• 5s25	p ⁵	5s²(
Cs ⁵⁵	Ba ⁵⁶	La ⁵⁷	Hf	2 Ta	73 V	174	Re ⁷⁵	Os7	4 i r ⁷	7 Pt	8 A	u ⁷⁹	Hg	TIS	P	9 ⁸²	Bia	3 1	Po ⁸⁴	At ⁸	5 (Rn
6 1	6 s ²	5d 6 1 2	4f ¹ 5d ² 6s ²	1 5d 63	3 5		f	希 :	土类	頁磁	性	元	素	6 s ²€	p 6.	² 6p ²	65²	6p ³	61²6p	4 63 ² 6	5µ ^s	6s²
Fr ⁸⁷	Ra ⁶⁸	Ac ⁸⁹	\square					· • •														
		6d		Ce⁵⁸ 4/ ²	Pr ⁵⁹ 4 <i>f</i> 3	N 4/	d ⁶⁰ P 4 <i>j</i>	m ⁶¹ ™	Sm ⁶² 4 <i>f</i> ⁶	Eu ⁶³ 4 <i>f</i> ¹	Gd ⁶⁴ 4 <i>f</i> 7	1 TI 4	b ⁶⁵ [18 .4	y⁶⁶ f ¹⁰	Ho ⁶⁷ 4/11	Er ⁴	68 12	Tm ⁶ 4/ ¹³	69 Y	Б 70 /11	4f14	
73	732	7 3 2	Ĺ	63²	63²	6,	2 61	2	63²	6s²	5d 6s²	5a 6s	i ;² E	5 ²	6s²	6s²		6s²	6	3 ²	5d 6s²	
				Th∞	Pa ⁹	U)2 N	р ⁹³	Рц ⁹⁴ 5.01	Am ⁹⁵	Cm ^s	⁶ B	k ⁹⁷	21 ⁹⁸	Es ⁹⁹	Fn	n ¹⁰⁰	Md	¹⁰¹ N	0 102	Lr	103
				- 6d2	oj. 6d	5) 60	- ⁵ /		J.	ру. 197	5J. 6d								1			

Electron Configuration in Transition Metal lons d⁵ d^6 d^7 d^8 d⁹ Mn²⁺ Fe²⁺ Co Ni²⁺ Cu²⁺ d^4 d^3 d^1 d^2 V³⁺ Cr^{3+} Mn³⁺ Fe³⁺ Co³⁺ Ni³⁺ Cu³⁺ Ti³⁺ V^{4+} Cr⁴⁺ Mn⁴⁺ Fe^{4+} # # eg _____ _____ # ₩ **###**# ## **## **** ###**# t_{2g} ŧ = *S*=1 *S*=3/2 *S*=2 *S*=5/2 S = 1/2S=1S = 1/2S = 1/2S=0= # S=1S=2Hunds' rule and Crystal **Electric Field Effect**

Electronic Structure of Manganese oxides

When *J* is negative due to the overlap of wave functions among nearest neighbor atomic sites, Spins are anti-parallel. On the other hand, if the wave function is orthogonalized, J is always positive and hence ferromagnetism is realized

Proof:

$$f_{n_1n_1} = \int \varphi_{n_1}^{*}(r_1) \varphi_{n_2}^{*}(r_2) \frac{e^2}{r_{12}} \varphi_{n_1}(r_2) \varphi_{n_2}(r_1) d\tau_1 d\tau_2$$

1 / r is expanded in a Fourier series as

$$\frac{e^2}{r_{12}} = \frac{1}{V} \sum_{k} \frac{4\pi e^2}{k^2} e^{ik \cdot (r_1 - r_2)}$$

J = -2St + J' = J' (because of S=0)

$$J_{n_1n_2} = \frac{1}{V} \sum_k \frac{4\pi e^2}{k^2} \int \varphi_{n_1}^{\bullet}(\mathbf{r}_1) \varphi_{n_2}(\mathbf{r}_1) e^{i\mathbf{k}\cdot\mathbf{r}_1} d\tau_1$$
$$\times \int \varphi_{n_1}^{\bullet}(\mathbf{r}_2) \varphi_{n_1}(\mathbf{r}_2) e^{-i\mathbf{k}\cdot\mathbf{r}_2} d\tau_2 > 0$$

のように書きかえられる.したがって J_{nine}は常に正である.

Resistance

Ultra-fast Switching Phenomenon in Strongly Correlated One Dimensional Mott Insulators - Photo Induced Carrier Doping -

0.75

0.5

0.25

0

Reflectivity

Electronic Structure of Manganese oxides

Figure 1 Field-effect control of the hole-induced ferromagnetism in magnetic semiconductor (In,Mn)As field-effect transistors. Shown are the cross-sections of a metal-insulator—semiconductor structure under gate biases V_G . This controls the hole concentration in the magnetic semiconductor channel (filled circles). Negative V_G increases hole concentration, resulting in enhancement of the ferromagnetic interaction among magnetic Mn ions, whereas positive V_G has an opposite effect. The arrow schematically shows the magnitude of the Mn magnetization. The InAs/(AI,Ga)Sb/AISb structure under the (In,Mn)As layer serves as a buffer relaxing the lattice mismatch between the structure and the GaAs substrate to produce a smooth surface on which the magnetic layer is grown.

Figure 2 Magnetic-field dependence of the sheet Hall resistance R_{Hall} proportional to the magnetization of the magnetic semiconductor layer. R_{Hall} is used to measure the small magnetization of the channel. Shown are R_{Hall} as a function of field perpendicular to the layer at temperatures T = 5-60 K of sample A at $V_{\text{G}} = 0$ V. Clear hysteresis observed at $T \approx 20$ K is evidence of ferromagnetism. Inset, the temperature dependence of the remanence of R_{Hall} (solid circles), showing that the ferromagnetic transition temperature T_{C} is above 20 K. Open circles indicate the channel sheet resistance R_{sheet} at zero field, which shows moderate negative T-dependence.

Figure 3 R_{Hall} versus field curves under three different gate biases. Application of $V_{\text{G}} = 0$, +125 and -125 V results in qualitatively different field dependence of R_{Hall} measured at 22.5 K (sample B). When holes are partially depleted from the channel ($V_{\text{G}} = +125$ V), a paramagnetic response is observed (blue dash-dotted line), whereas a clear hysteresis at low fields (<0.7 mT) appears as holes are accumulated in the channel ($V_{\text{G}} = -125$ V, red dashed line). Two R_{Hall} curves measured at $V_{\text{G}} = 0$ V before and after application of ± 125 V (black solid line and green dotted line, respectively) are virtually identical. Inset, the same curves shown at higher magnetic fields.

Magnetism on Report (deal line: 11/11)

Read the reference;

H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, "Electric-field control of ferromagnetism", Nature 408, 944 (2000).

1. Describe the origin of ferromagnetism in Mn-doped semiconductors.

2. Consider why the decrease (increase) of the hole concentration by the application of electric field results in a reduction (an increase) of hole-mediated ferromagnetic exchange interaction among localized Mn spins.

Figure 4 Temperature dependence of spontaneous Hall resistance $R_{\rm Hall}^{\rm S}$ under three different gate biases. $R_{\rm Hall}^{\rm S}$ proportional to the spontaneous magnetization $M_{\rm S}$ indicates \pm 1 K modulation of $T_{\rm C}$ upon application of $V_{\rm G} = \pm$ 125 V (sample A). $T_{\rm C}$ is the temperature at which $R_{\rm Hall}^{\rm S}$ (and hence $M_{\rm S}$) goes to zero. Data at $V_{\rm G} = 0$ V before and after application of \pm 125 V are shown by squares and down triangles, respectively. In order to minimize the effect of domain rotation and magnetic anisotropy, $R_{\rm Hall}^{\rm S}$ is determined by extrapolation of $R_{\rm Hall}$ from moderate fields (0.1–0.7 T) to 0 using Arrott, plots ($R_{\rm Hall}^{\rm S}$ verses $B/R_{\rm Hall}$ plots shown in inset).