Problem 1

Consider the electronic state of hydorgen molecule ion (H_2^+) . The Hamiltonian $[\mathcal{H}(H_2^+)]$ is given by,

$$\mathcal{H}(\mathbf{H_2^+}) = \frac{-\hbar^2}{2m}\Delta - \frac{e^2}{|\mathbf{r} - \mathbf{R_a}|} - \frac{e^2}{|\mathbf{r} - \mathbf{R_b}|}$$

where $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ is the differential operator of kinetic energy and $U_0 = -\frac{e^2}{\mathbf{r} - \mathbf{R_a}} - \frac{e^2}{\mathbf{r} - \mathbf{R_b}}$ is the Coulomb attractive potential energy between electron and nuclei. \mathbf{r} , $\mathbf{R_a}$, $\mathbf{R_b}$ are the position vectors at electron, and neclear A and B, respectively. e and m is the charge and mass of electron. $h(\hbar = h/2\pi)$ is the Plank's constant. When E_{1s} is the eigen energy for the 1s state of hydrogen atom and $\psi_a(\mathbf{r})$ and $\psi_b(\mathbf{r})$ are their eigen function for the nuclear A and B, respectively. Anser the following problems.. The transfer integral (t) and the Coulomb integral are respectively defined by

$$\begin{split} t &= \int \psi_a(\mathbf{r}) \frac{e^2}{|\mathbf{r} - \mathbf{R_a}|} \psi_b(\mathbf{r}) d\mathbf{r} = \int \psi_b(\mathbf{r}) \frac{e^2}{|\mathbf{r} - \mathbf{R_b}|} \psi_a(\mathbf{r}) d\mathbf{r} \\ u &= \int |\psi_a(\mathbf{r})|^2 \frac{e^2}{|\mathbf{r} - \mathbf{R_b}|} d\mathbf{r} = \int |\psi_b(\mathbf{r})|^2 \frac{e^2}{|\mathbf{r} - \mathbf{R_a}|} d\mathbf{r} \end{split}$$

Then, the overlap integral (S) of the 1s wave function for the A and B nuclear is also defiend by $S = \int \psi_a(\mathbf{r}) \psi_b(\mathbf{r}) d\mathbf{r}$.

- [1] Write down the following matrix elements of $\mathcal{H}(\mathbf{H}_2^+), <\psi_a(\mathbf{r})|\mathcal{H}(\mathbf{H}_2^+)|\psi_a(\mathbf{r})>, <\psi_a(\mathbf{r})|\mathcal{H}(\mathbf{H}_2^+)|\psi_b(\mathbf{r})>,$ $<\psi_b(\mathbf{r})|\mathcal{H}(\mathbf{H}_2^+)|\psi_a(\mathbf{r})>, <\psi_b(\mathbf{r})|\mathcal{H}(\mathbf{H}_2^+)|\psi_b(\mathbf{r})>$ in terms of the basic functions of $\psi_a(\mathbf{r})$ and $\psi_b(\mathbf{r})$ and express them, using E_{1s} , t, u, S.
- [2] Consider the electroninc state of H_2^+ by means of the molecular orbital method. Assume that it is given by

$$\Psi(\mathbf{r}) = c_a \psi_a(\mathbf{r}) + c_b \psi_b(\mathbf{r}),$$

When this Shorendinger equation is expressed by

$$\mathcal{H}(\mathrm{H}_2^+)\Psi = E\Psi$$

Write down the eigen energy E_1 , E_2 , using E_{1s} , t, u, S and expess the corresponding eigen function, $\Psi_1(\mathbf{r})$ and $\Psi_2(\mathbf{r})$ in terms of $\psi_a(\mathbf{r})$ and $\psi_b(\mathbf{r})$, S. Here $E_1 < E_2$.

[3 | When one more electron is added to H⁺₂, write down the Hamiltonian of hydrogen molecule.

Problem 2

Consider the electronic state of hydorgen molecule ion (H_2^+) . The Hamiltonian $[\mathcal{H}(H_2^+)]$ is given by,

$$\mathcal{H}(\mathrm{H_2^+}) = \frac{-\hbar^2}{2m}\Delta - \frac{e^2}{|\mathbf{r} - \mathbf{R_a}|} - \frac{e^2}{|\mathbf{r} - \mathbf{R_b}|}$$

where $\Delta = \partial^2/\partial x^2 + \partial^2/\partial y^2 + \partial^2/\partial z^2$ is the differential operator of kinetic energy and $U_0 = -\frac{e^2}{\mathbf{r} - \mathbf{R_a}} - \frac{e^2}{\mathbf{r} - \mathbf{R_b}}$ is the Coulomb attractive potential energy between electron and nuclei. \mathbf{r} , $\mathbf{R_a}$, $\mathbf{R_b}$ are the position vectors at electron, and neclear A and B, respectively. e and m is the charge and mass of electron. $h(\hbar = h/2\pi)$ is the Plank's constant. When E_{1s} is the eigen energy for the 1s state of hydrogen atom and $\psi_a(\mathbf{r})$ and $\psi_b(\mathbf{r})$ are their eigen function for the nuclear A and B, respectively. Anser the following problems..

$$\begin{split} t &= \int \psi_{a}(\mathbf{r}) \frac{e^{2}}{|\mathbf{r} - \mathbf{R}_{\mathbf{a}}|} \psi_{b}(\mathbf{r}) d\mathbf{r} = \int \psi_{b}(\mathbf{r}) \frac{e^{2}}{|\mathbf{r} - \mathbf{R}_{\mathbf{b}}|} \psi_{a}(\mathbf{r}) d\mathbf{r} \\ u &= \int |\psi_{a}(\mathbf{r})|^{2} \frac{e^{2}}{|\mathbf{r} - \mathbf{R}_{\mathbf{b}}|} d\mathbf{r} = \int |\psi_{b}(\mathbf{r})|^{2} \frac{e^{2}}{|\mathbf{r} - \mathbf{R}_{\mathbf{a}}|} d\mathbf{r} \end{split}$$

Then, the overlap integral (S) of the 1s wave function for the A and B nuclear is also defiend by $S = \int \psi_a(\mathbf{r})\psi_b(\mathbf{r})d\mathbf{r}$.

- [1] Consider the spin state for hydrogen molecule H_2 . Answer the size of total number of spin, $S = s_1 + s_2$.
- [2] Write down all possibe electronic states $\Psi_{H_2}(\mathbf{r_1}, \mathbf{r_2})$ for hydrogen molecule H_2 corresponding to each the spin state obtained in [1] as functions of $\Psi_1(\mathbf{r_1})$, $\Psi_1(\mathbf{r_2})$, $\Psi_2(\mathbf{r_1})$ and $\Psi_2(\mathbf{r_2})$ and describe why it is so wirtten.
- [3] Answer the eigen wave function $\Psi_{H2}(\mathbf{r}_1, \mathbf{r}_2)_g$ and eigen energy E_g at the ground state as functions of E_{1s} , t, u, S, U, K, J. Here all the integrals on the Coulomb repulsive interaction are defined as follows;

$$\begin{split} U &= \int \int |\psi_a(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_{12}|} |\psi_a(\mathbf{r}_2)|^2 d\mathbf{r}_1 d\mathbf{r}_2 \\ K &= \int \int |\psi_a(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_{12}|} |\psi_b(\mathbf{r}_2)|^2 d\mathbf{r}_1 d\mathbf{r}_2 \\ J &= \int \int \psi_a(\mathbf{r}_1) \psi_b(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_{12}|} \psi_b(\mathbf{r}_1) \psi_a(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2 \end{split}$$

, then all other integrals are ignored. Note $\mathbf{r_{12}} = \mathbf{r_1} - \mathbf{r_2}$

Problem 3

$$\Phi_{\rm HL} = \frac{1}{\sqrt{2(1+S^2)}} [\phi_a(1)\phi_b(2) + \phi_b(1)\phi_a(2)]$$

Show that the expectation value of eigen energy

$$<\Phi_{\rm HL}/H = (H'_1 + H'_2 + e^2/r_{12})|\Phi_{\rm HL}> = E_{\rm HL}$$

$$E_{\rm HL} = \frac{1}{1+S^2} \iint \phi_a(1)\phi_b(2) H[\phi_a(1)\phi_b(2) + \phi_b(1)\phi_a(2)] dv_1 dv_2$$

is given by

$$E_{\text{HL}} = 2E_{1s} + \frac{Q}{1 + S^2} + \frac{J}{1 + S^2}$$

where
$$Q = \iint \phi_a(1)^2 \phi_b(2)^2 \left(-\frac{e^2}{|\mathbf{r}_1 - \mathbf{R}_b|} - \frac{e^2}{|\mathbf{r}_2 - \mathbf{R}_a|} + \frac{e^2}{r_{12}} \right) dv_1 dv_2$$

$$J = \iint \phi_a(1)\phi_b(1)\phi_a(2)\phi_b(2) \left(-\frac{e^2}{|\mathbf{r}_1 - \mathbf{R}_b|} - \frac{e^2}{|\mathbf{r}_2 - \mathbf{R}_a|} + \frac{e^2}{r_{12}}\right) dv_1 dv_2$$

Problem 4

We define the following integrals

$$U = \int \int |\psi_a(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_{12}|} |\psi_a(\mathbf{r}_2)|^2 d\mathbf{r}_1 d\mathbf{r}_2$$

$$K = \int \int |\psi_a(\mathbf{r}_1)|^2 \frac{e^2}{|\mathbf{r}_{12}|} |\psi_b(\mathbf{r}_2)|^2 d\mathbf{r}_1 d\mathbf{r}_2$$

$$J' = \int \int \psi_a(\mathbf{r}_1) \psi_b(\mathbf{r}_2) \frac{e^2}{|\mathbf{r}_{12}|} \psi_b(\mathbf{r}_1) \psi_a(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

Other integrals are neglected. ${f r}_{12}={f r}_1-{f r}_2$ とする.

Show that

$$E_{\text{HL}} = 2E_{1s} + \frac{Q}{1+S^{2}} + \frac{J}{1+S^{2}} = 2E_{1S} - 2u - 2\underline{S}t + K + J'$$

$$Q = \iint \phi_{a}(1)^{2} \phi_{b}(2)^{2} \left(-\frac{e^{2}}{|r_{1} - R_{b}|} - \frac{e^{2}}{|r_{2} - R_{a}|} + \frac{e^{2}}{r_{12}} \right) dv_{1} dv_{2} = -2u + K$$

$$J = \iint \phi_{a}(1)\phi_{b}(1)\phi_{a}(2)\phi_{b}(2) \left(-\frac{e^{2}}{|r_{1} - R_{b}|} - \frac{e^{2}}{|r_{2} - R_{a}|} + \frac{e^{2}}{r_{12}} \right) dv_{1} dv_{2} = -2\underline{S}t + J'$$

And then $E_g - E_{HL} = ?$