Present Status and Frontiers of Computational Materials Design

Industrial Society to Knowledge-based Society

「Knowledge-based Fabrication」 & 「New Business Model」 (Knowledge-based Society)

20th C: Mechanism by Quantum Mechanics
 21st C: Design by Quantum Mechanics

21st century's Social Problems Energy • Environment • Aging Society • Security

- High-efficiency energy conversion
- Next generation nano-electronics
- Environment-friendly materials
- Life-science-related materials
- Security & Safety-related materials

吉田博©

Industrial-Structure Change Industrial Society to Knowledge-based Society

Outline

- 1. Spinodal Nano-technology as a New Class of Bottomup NT.
- Self-Organized & Universal Nano-Fabrication Method
- 2. Spintronics Materials Design
- New Materials Design, Realization & Tc
- 3. Photovoltaic Materials Design by Codoping, Self-Regeneration, and Spinodal Nano-Decomposition for PVSCs.
- Electron-Hole Separation & Nano-Superstructurs

吉田博©

Spinodal Nanotechnology as a New Class of Bottom-up Nanotechnology

True Nanotechnology

There's Plenty of Room at the Bottom, R. P. Feynman "Father of Nanotechnology", APS, 12/29/1959 at CALTECH

Spinodal Nano-decomposition

Sato, Katayama-Yoshida, Dederichs, JJAP, 44 (2005) L948. [ISI: 142]

Dairiseki-Phase & Konbu-Phase by Spinodal Nano-decomposition Sato et al., JJAP, 44 (2005) L948. [ISI:142] Fukushima, et al, JJAP,45 (2006) L416. [ISI: 100

A New Class of Bottom-up Nanotechnology

Spinodal Nanotechnology

Semiconductor Nano-Spintronics
Semiconductor Nano-Spincaloritronics
Spinodal Thermoelectric-Power Materials
High-efficient Nano-Spinodal LED & LASER
Nano catalyst for Automotive Gas-Emission
Nano-Spinodal Photovoltaic Solar Cells
Hydrogen Photosynthesis Nano catalyst
Semiconductor-DMS Hydrogen Storage
High-7, Nano-Superconductors
Nano catalyst for Fuel Cells
Multi-ferroic Nano composites
Spinodal Nano-Quantronics
Spinodal Nano-Water-Splitting
Spinodal Nano-Artificial Photosynthesis

吉田博©

LDA vs. PSIC-LDA : Akai-KKR-CPA (Ga,Mn)N

Semiconductor Nano-Spintronics : Materials Design & T_c

Spinidal Nano-decomposition in Semiconductor Spintronics

3D Spinodal Nano-Decomposition in (Ga,Cr)N ; Cr30%

T_c enhances dramatically by 3D Spinodal lano-decomposition above the percolation limit.

> K. Sato, H. Katayama-Yoshida, P.H. Dederichs, Jpn. J. Appl. Phys. 44 (2005) L948. [ISI: 142]

■*Konbu-Phase* with High-*T_B* is Ubiquitous

Codoping with interstitial impurities in GaMnAs

Codoping for High-T_c DMS

Self-compensation is "Mother Nature's Codoping".

We propose a new class of "Alchemist's Codoping".

Yamamoto, Katayama-Yoshida, JJAP, 38 (1999) L166. [ISI: 340]
 Sato, Katayama-Yoshida, Dederichs, JJAP. 44 (2005) L948. [ISI: 142]

吉田博©

■*H. Katayama-Yoshida, T. Yamamoto, US-Patent US6153895,*特願平8-14091、特 開平09-213978,特願平9-308765、特開平11-145500,特願平9-239839、特開平11-87750 吉田博(6)

CIS系 Photovoltaics Materials Design by Codoping and 直接遷移型=光デバイスに適す CuInSe₂ Self-Regeneration 1) 光吸収係数 :半導体の中で最大 $\alpha = 1 \times 10^5 \text{ cm}^{-1} 程度$ *Self-Regeneration *Artificial Doping of Acceptor and Donor 2)直接遷移型半導体 (cm⁻¹) :光デバイスに適す 間接遷移型 結晶Si:間接遷移型半導体 1.5 800 AM 1 CdS ⇒ 原理的には、 厚さ1μm以下の薄膜で、 400 CuGaSe. 高効率太陽電池が作れる。 1.5 2.0 2.5 1.0

吉田博©

Electronic structure: CuInS₂(Se₂) Yamamoto, Katayama-Yoshida JJAP (1995). [ISI: 340] InSe + CuSe Chalcopyrite CuInSe₂ = CulnSe₂ Energy CBM CBM Band-gap (1.1eV) Anti-bonding VBM 6eV xy, yz, zx xy, yz, zx Non-bonding $x^2 - y^2$, $3z^2 - r^2$ x^2-y^2 , $3z^2-r^2$ xy, yz,zx xy, yz,zx VBM Bondina

Self-Regenerated Low-Cost & High-Efficiency PVSCs : $[2V_{Cu}^{-} + In_{Cu}^{2+}]$

長波長域

hv (eV)

Chalcopyrite CuInSe₂ (CIS)

Zhang, Wei, Zunger, Katayama-Yoshida, Phys. Rev. B57 (1998) 9642. (ISI: 586)
 Yamamoto, Katayama-Yoshida, JJAP, 36(1997) L180. (ISI: 76)
 Yamamoto, Katayama-Yoshida, JJAP, 38 (1999) L166. (ISI: 340)
 Yamamoto, Katayama-Yoshida, PHYSICA B, 302 (2001) 115. (ISI:111)

短波長域34

Self-Regeneration & Spinodal Nano-Decomposition

Stoichiometric Compounds	[Rule 1] : Self-Regeneration Mechanism	Self-Regenerated Compounds	[Rule 2] : Spinodal Nano- Decomposition
CuIn[S,Se] ₂ (CIS)	$[2V_{Cu}^{-} + In_{Cu}^{2+}]$	Cu ₁₋₃₀ In ₁₊₀ [S,Se] ₂	[Cu,V _{cu}] [S,Se] [Se,O]
Cu[In,Ga][S,Se] ₂ (CIGS)	$[2V_{Cu}^{-} + In_{Cu}^{2+}]$	Cu ₁₋₃₀ [In _{1+o-X} Ga _X][S,Se] ₂	[Cu,V _{cu}] [In,Ga] [S,Se] [Se,O]
Cu ₂ ZnSn[S,Se] ₄ (CZTS)	[V _{cu} ⁻ + Zn _{cu} ⁺]	Cu ₂₋₂₀ Zn ₁₊₀ Sn[S,Se] ₄	[Cu,V _{cu}] [S,Se] [Se,O]
			38

Experimental Verification of Self-Regeneration from the Radiation Damage Tested by JAXA's Satellite "TUBASA" : Cullin,GalSe₂

My Parent's Country House, Okayama, Japan

Spinodal Nanotechnology as a New Class of Bottom-up Nanotechnology to Increase the PVSC Efficiency Dramatically

CIS: CuInSe₂ [Cu,V_{Gu}]

We Can Increase the Energy Conversion Efficiency Dramatically, By Controlling the Spinodal Nano-Decomposition.

吉田博©

42

CIGS : Cu[In,Ga]Se₂

We Can Increase the Energy Conversion Efficiency Dramatically, By Controlling the Spinodal Nano-Decomposition.

Mixing Energy & Spinodal Nano-Decomposition : CIGS & CZTSSe

20% Efficiency $Cu[In_{1-x}Ga_x]Se_2$: $X_{Ga} = 0.3$ Spinodal Nano-Decomposition (*Dairiseki-Phase*)

Tani, Sato, Katayama-Yoshida

Y. Yan, M.M. Al-Jassim. NREL.

20% PC Efficiency Cu[In_{1-x}Ga_x]Se₂ : X_{Ga} = 0.3 Nanodomains (*Dairiseki-Phase*)

Nanoscale Spinodal Wave Length : 10~20 nm Y. Yan, M.M. Al-Jassim & R. Noufi, NREL.

Band Alignment between CuInSe₂ & CuGaSe₂

Cu(In,Ga)(Se,O)₂: Grain Boundaries

STEM/EELS image

Yanafa Yan et al. NREL

• Self-Regeneration by $[2V_{Cu} + In_{Cu}^{2+}]$

SCM Data of $Cu_{1-3\alpha} In_{1-X+\alpha} Ga_X Se_2 : [2V_{Cu} + In_{Cu}]$ *p*-, *n*-type Inversion Area Ratio & Efficiency

- Anti-Correlation of Cu/In & Se/O.
- Self-Regeneration by $[2V_{CU} + In_{CU}^{2+}]$

• Upward Convexity in $F \Rightarrow$ Spinodal Nano-Decomposition 55

inº.

0.2

 $(\partial^2 F / \partial x^2) < 0$

0.4 0.6 0.8

S concentration x

Cu2ZnSn(Se1,, Sx)4

Type II band alignment Effective Electron & Hole Separation

Type II

ΔE, 0.46 eV

Valence band

吉田博C

Monte Carlo Simulation of 3D Spinodal Nano-Decomposition in Cu₂ZnSn[S,Se]₄

Dairiseki-Phase : $Cu_2ZnSn[Se_{1-x}S_x]_4$ $X_5 = 0.15$

To *n*-type electrode

59

• Generation of Multi-exiton by Inverse Auger effect.

Spinodal Nano-decomposition : Raman Scattering [~100 nm]

A. Fairbrotheret al., Chem. Phys. Chem., 14, (2013) 1836.

Atom Probe Tomography [Cu,V_{Cu}] : Cu₂ZnSnSe₄

FIG. 2. (a) Three-dimensional elemental map of Cu (blue), Zn (grey), Sn (dark green), and Se (red); (b) only Cu and Sn displayed as well as iso-concentration surface of 32.5 at. % Zn (grey) and 7.0 at. % Cu (blue). Volume size for (a) and (b) is $62 \times 66 \times 219 \,\mathrm{nm^3}$.

61

T. Schwarz et al., Appl. Phys. Lett. 102, 042101 (2013).

GB study by STEM-EDS in Cu₂ZnSn[S,Se]₄

Spinodal Nano-Decomposition in Cu₂ZnSn(S,Se)₄ at the Grain Boundary

- Anti-Correlation of Cu/Zn
- Anti-Correlation of Cu & V_{Cu}⁻

Self-Regeneration by $[V_{Cu} + Zn_{Cu}]$

- Spinodal Nano-Decomposition in Cu₂ZnSn(S,Se)₄ at the Grain Boundary
- Anti-Correlation of Se/O.
- Strong Ionicity of O at GB.

Printing, Painting, Plating Methods in Cu₂ZnSn(S,Se)₄ PVSCs

Figure 2. (a) J-V characteristics for the 11.1% champion cell C1. (b) Internal quantum efficiency (*IQE*) and the external quantum efficiency (*EQE*) bias ratio EQE(-1V)/EQE(0V) (top panel) of the champion cell and of the previous generation cell B1.

Cu₂ZnSn(S,Se)₄ PVSCs 12.6%

7	27 58.933 CO Cobalt	28 58.70 Ni Nickel	Capper Copper	Zn	Gallium G
7	6.929 6.776 & 45 102.906	のエネルギー変 を表した。米1B	池「CZTS太陽 使わない次世代型 でメタル (希少金	レアメタル レアメタル	49 114.82 50
2	Rhodium 20.217 2.666 77 192.22	ム を 組 マ し 、 同型 し こ こ て い て い て い て い で い に 朝 、 要 す 。 で い と 料 に 銅、 モ レ ン ト し れ に 朝 、 要 し 、 ち レ ン う 、 て し ン う 、 て し ン う 、 て し 、 ち し 、 ち し 、 ち し 、 ち し 、 ち し 、 ち し 、 ち し 、 、 一 の 、 一 の 、 一 の 、 の の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の の の 、 の の の の の 、 の 、 の の の の 、 の の の の の の の の の の の 、 の の の の の の の の の の の の の	電池」 みており、市 大陽電 トの低減に ティア 録は同チー	千要の太陽電池	24.209 25.3286 3.4 3.285 1 3.4 81 204.38 82
Ð	Iridium 64.906 9.174 1.978	なが生産する。 社の なの 、スズ、硫 博士 、 、 社の 、 、 、 社の 、 、 、 、 、 、 、 、 、 、 、 、 、	実用化を目指 た。 11・1%だっ 11・1%だっ 日 日 た。	低来の世界記 使名 場 ()	Thallium 72.869 10.255 2.258 8 10 2.3
5)	62 150.36 Sm	である間を2~35はKの の技術を組み合わせて の技術を組み合わせて	L B M が 持 つ 基 礎 技 に L B M が 持 つ 基 礎 技 の 子 の よ の 引 の 大 同 研究 を 始め の う し わ し し 日 の か ら ろ ち の う し う し し 日 の の ろ の ち の う の ち の う の う の ろ の ち の ろ の ち の ろ の ち の ろ の ち の ろ ろ の ち の ろ ろ ろ ろ	インジウム、セレン	66 162.50 67 DV

SUMMARY

- 1. Spinodal Nano-technology as a New Class of Bottom-up NT.
- Self-Organized & Universal Nano-Fabrication Method
- 2. Spintronics Materials Design
- New Materials Design, Realization & Tc
- 3. Photovoltaic Materials Design by Codoping, Self-Regeneration, and Spinodal Nano-Decomposition for PVSCs.
- Electron-Hole Separation & Nano-Superstructurs

吉田博©