History for High-T_ Superconductivity Phenomena
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Mechanism of High-T_ Superconductivity ?
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Theoretical model for correlated electron systems

Hubbard model
— +
H= -1 a",a4; + Uynym;
Kinetic energy On-site Coulomb repulsive interaction
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What is the Novel Characteristics of Correlated Electrons ?

Conventional metal (itinerant electrons with no spin degree of freedom )
Charge plays role for “Electronics”

One electron per atom

§ [— <—>M<—>/F t>>U

Mott Insulators (magnetism with spin degree of freedom)

@ @ @ U >t

Strong repulsive
Coulomb interaction

Doped Mott insulators on a same lattice site
due to narrow 3d

i
Foveomy o




Spin+:Charge-Orbital degrees of freedom are coupled
each other

Vowe O

Multi-criticality of different phase yields giant response to the application
of external magnetic or electric fields, and to photo irradiation.

Rich variety of ground states such as high-T, superconductors, novel

magnetism and electricity

Small number of electrons affects the Avogadro’s number of electrons

Narrow spatial distribution of orbits of 3d and 4f electrons

play role for emergent properties in transition metal oxides
and rare earth inter-metallic compounds due to Correlation
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Radial Distribution of Electron Density at atomic site




Hamiltonian in Magnetic Substances

J <0 (incase of wave functions mixed )
. Antiferromagnetism
J > 0 (in case of wave functions being orthgonalized )

: Ferromagnetism

Theoretical model for correlated electron systems
Hubbard model

H= -1 a",a; + Uynym

Kinetic energy On-site Coulomb repulsive interaction
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Model Hamiltonian for Strongly Correlated Electrons Systems
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Mott Insulator and charge-carriers doped

Insulator — Metal Transition
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Hubbard model
H= -1 a",a4; + Uynym;

Kinetic energy On-site Coulomb repulsive interaction
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Strong Correlation Effect in Solid

Covalent bonding effect of H, molecule
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1. Electronic state of H,*(Molecular Orbital Method)

IR e Molecular orbital composed
of 1s eigen state at nuclear

A and B sites

Eigen equation

H¢=E¢ Haa""E Hba—SE ~0

Hab - SE be - E

Eigen function Eigen energy Here
- ¢a+¢b _Haa+Hab — o Do H.,; = JHao:dv.
¢1—\/2(1+S)’ E, = 1+ S ’ S f¢¢dv’ J /‘gb ¢;av
a T Haa — Ha.
¢ = 7%(1_:%‘;7’ E; = 1—3S - Haa - be, Hab - Hba

2. Hydrogen Molecule (Molecular orbital method)

Put two electrons into the lowest bonding molecular orbital state

e + P The wave function for two electrons system should be
=TSy under the constrain of anti-symmetric condition in
mutual exchange of position of electrons.

1 |1 (Da(l) @AM
@szﬁ
$1(2)a(2)  ¢:1(2)8(2)

= ¢:1(1)¢n(2) 717 [«(1)8(2) — (1Da(2)]  Here H’, , H’,are given by

H=H’,+H’,+er,, |p-_" 4, ¢ _ ¢
1 2t e |H om 4™ =R T Tr= Ry

The expectation value of eigen energy is given by

| 2 Heo + Has
Es =2FE, +f¢1(7‘1)2¢1(r2)2 ¢ duvidv: Ei=—1%%§

712

The Coulomb repulsive interaction energy is included.




The right figure shows the binding energy . \ \
E, as the function of distance R between \
the A and B nuclear. The molecular orbital \
approximation gives rise to E, = 2.65 eV o
and R=0.85 A. These values are not
consistent with the respective

experimental values 4.72 eV and 0.74 eV.
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What is the reason why the molecular HE= T
orbital method is not good approximation ?

P1(1D¢1(2) ¢ pa(1)a(2) + ¢o(1)s(2) + ga(1)e(2) + ¢p(1D¢a(2)

The first and second term correspond to the state where two electrons

occupy the same site like H*H-. Inthe case of R — ©, H'H™ is
unstable because two hydrogen atoms are well separated. The reason
why this approach is not good is that the on-site Coulomb energy cost
U is larger than the transfer integral t.

2. Atomic orbital description of hydrogen molecular

(Heitler-London method)

_ 1
P = o]+ 575 (D82 + ¢n(1)¢a(2)]
The expectation value of eigen energy is given by

<@y |H=(H’;+ H’,+ °/r},)| Dy >=Ey,

B = 1 [ 4R HIS D@ + p(Dgu(Dderde

Q . J

Enw =2FE, + 1+ S°?

Q =/f¢a(1>2 ¢'b(2)2<— Ir: f‘szl - |1 ‘e“zRal + :122 >dv1dv2
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Biding energy (eV) | Distance between
atoms (A)
Molecular orbital 2 65 0.85
Atomic orbital 314 0.87
Experiment 472 0.74

The atomic orbital method is better than the molecular
method for hydrogen molecule. Note that the spin state of

the atomic orbital is given by [a(1) B(2) —B(1) a(2) 1./2 ]
Consider other atomic orbital state with parallel spins as follow ;
1(Dal)  ¢:(1Dall)

o _.__1___
TTV2 (a2 g(Dal2)

= Ty [ (D — gu(DD]a(Da(?)

The spin function is expressed by other two sets B(1) B(2) (S,=—1),
[a(1) B(2) + B() a(2) I/\/2 1(S,=0) for parallel spins (S=1).

The expectation o F 4 Q J
value of energy s 1 — .?2 1 — S
for parallel spins (5=1) overlap integral
For anti-parallel spin 9 F. U - J 1
(5=0) " + 5° 1+ 5

The difference between S=0 and S =1 state is 2J where

J = J('f a1 )i (1 )gra(20ehe (2D {_ m—fm‘l
5 -+ :Iz ‘ ':If'f‘i-'nd-z-, - —ZSt + J,
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Since the overlap integral between the 1s wave
function S is large, J is negative. Therefore,
when the spin direction at each atomic site is
anti-parallel, atoms are bound. This is called as
covalent bond. J -//swemuene(- 5ty

X 1 2
- -ll‘iﬁ + :-—_ + %)di-'ldt'!

The difference between the S =0 and S = 1 state is
E(1]-|11)—E (11, —<,l])= 2J = —4St+2J’

In other context, the effective Hamiltonian is given by —2J s_* s,.
note S=s,+s, and S(S+1)=S?2=5_2+5s,2+ 25,5,
Note s,*S, =—3/4 for S= 0and s,*S, =1/4for S =1.

E(S=0)-E(S=1) =2J is obtained.

—2J s_-s, type of Hamiltonian is applicable for many-body
systems and is called as the Heisenberg Hamiltonian.

Problem 1

Consider the electronic state of hydorgen molecnle ion |'[[:,'"|. The Hamiltonian |'HI'[[§"_’|| is given by,

—1? e? 2
HIE - —A - —_—,_— —
L2 Ty . -
2m r— R, |r_Rp
where A 2/ x? } ;}2__.-r}_(,-3 } rf?_-.)':'2 is the differential operetor of kinetic cnergy and [ 0 _re_l'i-‘_ re_l'h

15 the Coulomb attractive potential energy between electron and nuclel. r. R, Ry, are the position vectors
ab electron. and neclear A and B. respectively. e and m iz the charge and mass of electron. h(h J"!__-",_’_-‘.__I
15 the Plank's constant. When [, is the cigen energy for the 1s state of hydrogen atom and i, (r) and
Up(r) are their elgen function for the nuclear A and B, respectively. Anser the following problems..

The transfer integral (1) and the Coulomb integral are respectively defined by

2
-2
1 1) el ldr /r' (1) —————,(rdr
al plr ) all)
] |1‘_ Rn‘ - |1‘_R1||
2

[ Vet e — [ a2

gl 1| —r el T )| T

. r— Ry . [r — Ra|

Then. the overlap integral (S) of the 1s wave function for the A and B nuclear is also defiend by

S = [abg(rjy(r)dr

[ 1 | Write down the following matrix elements of H(HJ ), < ¥afr)|[H{HT ) Walr) =, < do(r)|HHT ) [tp(r) =,
.-'b[r]|'_.7-["[[[;]|r‘a[1‘] :_‘b[r]|H|]];]‘.-'5[1‘_] = in terms of the bagic functions of ¥g(r) and Yy (r)
and express them, using Fpg, 6w, S

[ 2 | Consider the electronine state of HI by means of the molecular orbital method. Assume that it is
given by

U(r) — cqthalr) + cpiipir).
When this Shorendinger equation is expressed by
H(HT )y = B

Write down the elgen energy Ey. Ea, using Eg. 6w, S and expess the corresponding eigen funetion,

W(r) and Ya(r) in terms of g (r) and (e, S. Here By < Foa.




Problem 2
Consider the electronic state of hydorgen molecule ion l[[:,"w The Hamiltonian [H( [[._2"_'| is given hy,

9 o
2

I
—i

HOTS )

At
prrE o o R oy

CQ fj
T HRa 1 Rp
15 the Coulomb attractive potential energy hetween electron and nuclei. r. R,,. Ry, are the position vectors

where A — 92/a22 452 /924 rfi_-.'i:j is the differential operetor of kinetic e

eroy and Uy — —

at electron, and neclear A and B. respectively. e and m is the charge and mass of electron. (s — h/27)
is the Plank’s constant. When Fy, is the eigen energy for the 1s state of hyvdrogen atom and 1, (r) and
tp(r) are their eigen function for the nuclear A and B. respectively. Anser the following prohlems

The transfer integral (#) and the Counlomb integral are respectively defined by

2 2

i ¢ , } o= ,
gl gl T gl T | il (T Jelr
/ T - Ry / [r— Ryl "

2 2
(42 € | 2 "
m gl 1) | e e g1 )| e
_[‘ O TRy _[‘ G

Then. the overlap integral (S) of the 1s wave function for the A and B nuclear is also defiend by

S = [tglr)iy(r)dre

[ 1 ] Consider the spin state for hydrogen molecule Hy. Answer the size of total number of spin. 8

51 | S52.

[ 2 | Write down all possibe electronie states Wi, (r1.ra) for hydrogen molecule Ha corresponding to cach
the spin state obtained in [ 1] as functions of ¥y (ry ). Uy(re), Yalry) and Walra) and describe why

It 15 =0 wirtten.

[ 3 | Answer the eigen wave [unction '\[fHﬂlﬁl'l.l'g'\g and elgen energy f_y at the ground state as functions
of Fis. tow. S, U, K. J. Here all the integrals on the Coulomb repulsive interaction are defined as
followrs;

.o 2
T 2 ,
i / / |."all‘1_||27‘-"a|1‘3l|‘r.'1‘1r!1‘3
I [r12]

- 2
h //|"-‘ai’1‘1Z'IE—I"b'i'l‘zi‘lzf-“'l‘lf-"l‘z

[riz]

2
J //;'ﬂu']‘l].-_'bfrj] ! iy Jthg (re ldrdrg
g [rya|

then all other integrals are ignored. Note rig =1y — 19

Problem 3

O = Ty [9e(Dgn(2) + gu(Dga(2)]

Show that the expectation value of eigen energy

<@ |H=H’,+ H’,+ &’/r},)| Dy >=Ey,

B = 157 [ [ 40 @HISWA@) + gu(Dgu(D]duide

is given
sg e by Eny =2FE, + 1352—*—1_;_752

where o=[[urp@ (- imr - Timr T, Jdede
J= f f ¢a(1)¢b(1)¢a(2)¢b(2>(— Fi;lﬂ
-
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Problem 4

We define the
following integrals ]/Ifa'lul | alra)|?drydry

. 2
[ / |"- al I I|2—| ipiTa :Ilszll‘lr.';l‘g
. T12|
L8 2 1
/[;~a|:1‘1j|.-_'b|j1‘-_3_j| |]_ 2|.f~£:'|::l'l_:||"al:l'z:lr_l'l‘l-'fll‘j
. 1f

Other integrals are neglected.'- '12 — I't — I'2 L9B.
Show that
Eam. + % F o v roe =2E, - 2u-2St+K+ J’
Q= ff‘f’ @ (@~ -mi Infﬂai' LS 2utK
7= [[oco0@e@0 (- g
"‘ln—i:fzﬂ_l +%+%, dv.  ==28t+J

Problem 5

An energy difference between the spin-singlet (S=0) state and the spin-
triplet (S=1) state is given by

E (1]+ [D—E(1T, ««,l])=2J
on the basis of the atomic orbital method. Here, 2J=—4St+2 J°’

J’: fﬁ,‘z’n(j.)ﬁ:‘n(l}f,-"-siz}ﬂ"bf:z:'{ and § is the Overlap
4+ edvretes integral.

Fra

This energy difference is described by the following effective Hamiltonian
using the respective spin-operators S, and S at the A and B sites.

Heff= _2J Sa " Sb
Noting that S =s_+s, and S(S+1)=S?=s_2+ 55,242 s,"S,,
when S=0 and S$=1, show that s_,-s, =-3/4 and s_-s, = 1/4,

respectively, and the energy difference between S=0 and S=1
is given by 2J. The above Hamiltonian is known as the

Heisenberg Hamiltonian is written by H= - 2J%;: S;*S;




Problem 6

We next consider a more realistic solution of the electronic state in H, beyond

either Heitler —London or Molecular Orbital approximations, by assuming
H(1,2)=h(1)+h(2) +V (1,2) as a Hamiltonian for H, where /A(1)+A(2) is the sum of
one-electron Hamiltonian and V (1,2) is the Coulomb repulsive interaction between
electrons. Several integrals are defined as the follows;

e = / DDA P (1Ddv: = / $o(DR(D (D dvr

;= f GuCORD G Wddon = [ Gu(DRD gD

U, = f $e(1)a(2)* V1, Ddndun = f 5 (1'go(2)*V (1, 2Ddvrdos
U, = f o1 (2)' V1, Ddordo: = f 51 a(2)* VL, 2dendor

J = / GV ps(1)¢a(2)96(2) V(, 2)dvidv:

Solve the next problems.

(6-1)The trial wave functions of Molecular Orbital and Heitler-
London (HL) with spin-singlet and HL with spin-triplet are given by

s = ¢1<1>¢1<2>

— ¢a(1>¢b<2) + ¢b<l)¢a<2)
QHL - \/-2‘

_ $a(1D¢6(2) — (1D (2)
T \/?

/4

Show the respective expected eigen energies are given as follows;

ES:2(5+t)+é_Uo+—;‘U1+J,

28+ U1+J,
Er=2¢+ U1""'J,

S
:
|




(6-2) In order to improve the HL wave function;

Do = Ty [9e(D9() + g(Dgu(]
We incorporate the following states, using ¢, (1) ¢, (2) and ¢,(1) ¢, (2)
1
0 = 75 [0a(1)¢a(2) + ¢o(Dg(2)]

Then, the improved trial wave function is expressed by @ =c¢,®,,, +¢c, D’ .

Show how to get the following relation and solve an eigen energy for this state

28+U1+J,—E 2t
21 2%+ Uy +J —E|

If U~ U,>>|t]is valid for Mott insulator, show that the eigen
energy is given as the follow;

41

— /7
Eu, =2+ U, HJ U — UL




