Basic notion of Superconductivity

Mechanism of formation of electron pairs due to lattice vibration

Concept for Superconductivity

Provided that attractive interaction works between electrons near the Fermi level, electrons are always bounded making pairs - Cooper pairs -. In order to prove this theorem, we deal with a simple case where two electrons are added on the Fermi sea as illustrated below.

We deal with a following Schrödinger equation for two electrons with attractive potential $V(r_1, r_2)$;

$$\left[-\frac{\hbar^{2}}{2m}(\nabla_{1}^{2}+\nabla_{2}^{2})+V(\mathbf{r}_{1},\mathbf{r}_{2})\right]\psi(\mathbf{r}_{1},\mathbf{r}_{2})=E\psi(\mathbf{r}_{1},\mathbf{r}_{2}) \qquad (11.9)$$

In case of $V(\mathbf{r}_1, \mathbf{r}_2) = \mathbf{0}$, the wave function with a lowest energy at zero total momentum is described by the following formula;

$$\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{L^{3/2}} e^{i\mathbf{k}\cdot\mathbf{r}_1} \frac{1}{L^{3/2}} e^{-i\mathbf{k}\cdot\mathbf{r}_2} = \frac{1}{L^3} e^{i\mathbf{k}\cdot(\mathbf{r}_1 - \mathbf{r}_2)}$$
(11.10)

Then, for $V(\mathbf{r}_1, \mathbf{r}_2) \neq 0$ a wave function is expressed as follow;

$$\psi(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{L^3} \sum_{|\mathbf{k}| > k_F} A_{\mathbf{k}} e^{i\mathbf{k} \cdot (\mathbf{r}_1 - \mathbf{r}_2)}$$
(11.11)

Note that since this wave function is symmetric in orbital sector, the spin function is in anti-symmetric spin-singlet state.

Inserting (11.11) into (11.9) and using, $V_{\mathbf{k}} \equiv \int V(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$

$$(E-2\varepsilon_{\mathbf{k}})A_{\mathbf{k}} = \sum_{|\mathbf{k}'| > k_{\mathbf{k}}} V_{\mathbf{k}-\mathbf{k}'}A_{\mathbf{k}'}$$
(11.12)

We can derive this eigen equation.

When the eigen energy in the eq. (11.12) has a solution for E < $2\varepsilon_F$, two- electron bounded state (Cooper pair) is formed. Provided that $V(r_1, r_2)$ is approximated as follows;

$$V_{\mathbf{k}-\mathbf{k}'} = \begin{cases} \text{const} = V < 0 & |\varepsilon_{\mathbf{k}} - \varepsilon_{F}|, |\varepsilon_{\mathbf{k}'} - \varepsilon_{F}| < \hbar \omega_{D} \\ 0 & \text{otherwise} \end{cases}$$
(11.13)

Here, if the constant attractive interaction V is assumed to be effective only among electrons within energies in the range between the Fermi energy ε_F and the Debye energy $\hbar \omega_D$ thich is the highest one of lattice vibration, we obtain the following equation;

$$(E - 2\varepsilon_{\mathbf{k}})A_{\mathbf{k}} = -|V| \sum_{|\mathbf{k}'| > k_{\mathbf{k}}} A_{\mathbf{k}'}$$
(11.14)

When taking $A \equiv \sum_{|\mathbf{k}'| > k_F} A_{\mathbf{k}'}$, form (11.14) we have $A_{\mathbf{k}} = -\frac{|V|}{E - 2\varepsilon_{\mathbf{k}}} A \succeq \mathcal{I}_{\mathbf{k}}$

Since $A = A |V| \sum_{0 < (\varepsilon_k - \varepsilon_F) < \hbar \omega_D} \frac{1}{2\varepsilon_k - E}$, we obtain the following relation

$$\frac{1}{|V|} = \sum_{\substack{\mathbf{k} \\ 0 < (\varepsilon_{\mathbf{k}} - \varepsilon_{F}) < \hbar \omega_{D}}} \frac{1}{2\varepsilon_{\mathbf{k}} - E}$$
(11.15)

$$\frac{1}{V} = \int_{\varepsilon_F}^{\varepsilon_F + \hbar\omega_D} \frac{1}{2\varepsilon - E} N(\varepsilon) d\varepsilon$$
$$\approx N(\varepsilon_F) \int_{\varepsilon_F}^{\varepsilon_F + \hbar\omega_D} \frac{1}{2\varepsilon - E} d\varepsilon$$
$$= \frac{1}{2} N(\varepsilon_F) \ln\left(\frac{2\varepsilon_F - E + 2\hbar\omega_D}{2\varepsilon_F - E}\right)$$

 $N(\varepsilon_F) |V| \ll 1$ is considered and as a result we obtain the eigen energy as $E \approx 2\varepsilon_F - 2\hbar\omega_D e^{-2/N(\varepsilon_F)|V|}$

It was proved that electrons near the Fermi surface are bounded making pairs of (\mathbf{k}, \uparrow) and $(-\mathbf{k}, \downarrow)$ -**Cooper pair-** via the attractive interaction mediated by lattice vibration with highest energy -Debye energy $\hbar \omega_D$. Here the Cooper pair is in the zero total momentum and the spin-singlet state.

Since Cooper pairs are formed by many body of electrons near the Fermi level, these are condensed into **a macroscopic quantum state** which is regarded as a Bose condensation. This outstanding aspect of superconductivity was theoretically clarified by Bardeen, Cooper and Schriefer, and hence this theory is called as BCS theory which is epoch-making event in condensed matter physics in the 20th century.

In this BCS state, an isotropic energy gap ∆ opens on the Fermi level, yielding a perfect diamagnetism called Meissner effect and zeroresistance effect.

Concept for Superconductivity

Superconductivity

Conventional superconductivity:
Cooper pairattractive interaction: electron-phonon couplingattractive interaction: electron-phonon couplings-wave spin singletpairing channel: angular momentum I=0 and spin s=0order parameter: $\Psi(\vec{r}) = |\Psi(\vec{r})| e^{i\phi(\vec{r})}$ broken symmetry:U(1) gauge(1) gauge

Periodic Table for Superconducting Elements

Basic notion for BCS mechanism for Metals

Electron-lattice interaction brings about phonon absorption or emission via mobile electrons.

This is the origin of electrical resistance in solid at high temperature.

Electron – phone scattering process

Attractive electron-electron interaction is mediated by the virtual phonon-exchange process.

According to the energy conservation law; $\varepsilon_{\mathbf{k}} + \varepsilon_{\mathbf{k}} = \varepsilon_{\mathbf{k}'-\mathbf{q}} + \varepsilon_{\mathbf{k}+\mathbf{q}}$

$$U = -\frac{2|V_{\mathbf{q}}|^2(\hbar\omega_{\mathbf{q}})}{(\hbar\omega_{\mathbf{q}})^2 - (\varepsilon_{\mathbf{k}'} - \varepsilon_{\mathbf{k}'-\mathbf{q}})^2}$$

フォノンを媒介とした電子間の引力相互作用(電子-格子相互作用の二次摂動) 状態 k' にある電子が q のフォノンを放出して、k' – q となり、k にある電子が q のフォ ノンを吸収して、k + q となる過程を考える。この時、エネルギー保存則から、

$$\varepsilon_{k} + \varepsilon_{k'} = \varepsilon_{k+q} + \varepsilon_{k'-q}$$

電子のフォノン放出やフォノン吸収の相互作用(電子-格子相互作用)を摂動 Hamiltonian (H')として、この二次の摂動過程による系のエネルギー変化 ΔE を計算する。始状態と 終状態を形式的に |i)と |f)と表して、中間状態 |m)として、図の (a)と (b)を考えれば、

$$\Delta E = \sum_{m} \frac{\langle \mathbf{f} | H' | m \rangle \langle m | H' | \mathbf{i} \rangle}{E_{\mathbf{i}} - E_{m}}$$
$$\equiv \sum_{m} \frac{|Mq|^{2}}{E_{\mathbf{i}} - E_{m}}$$

ここで、 $E_i = \varepsilon_k + \varepsilon_{k'}$ であり、qのフォノンの放出及び吸収の過程での摂動 Hamiltonian の行列要素を M_q とした。

まず、中間状態として (a) を考えた場合は、 $E_{(a)} = \varepsilon_{k'-q} + \varepsilon_k + \hbar \omega_q$ なので、

$$E_{\rm i} - E_{\rm (a)} = \varepsilon_{k'} - \varepsilon_{k'-q} - \hbar \omega_q$$

となる。また、中間状態として (b) を考えた場合は、 $E_{(b)} = \varepsilon_{k'} + \varepsilon_{k+q} + \hbar\omega_{-q}$ なので、

$$E_{\rm i} - E_{\rm (b)} = \varepsilon_{k} - \varepsilon_{k+q} - \hbar \omega_{-q}$$

となる。 $従って、\Delta E$ は次のようになる;

$$\begin{split} \Delta E &= |Mq|^2 (\frac{1}{\varepsilon_{k'} - \varepsilon_{k'-q} - \hbar\omega q} + \frac{1}{\varepsilon_k - \varepsilon_{k+q} - \hbar\omega_- q}) \\ &= |Mq|^2 (\frac{1}{\varepsilon_{k+q} - \varepsilon_k - \hbar\omega q} + \frac{1}{-(\varepsilon_{k+q} - \varepsilon_k) - \hbar\omega q}) \\ &= \frac{2|Mq|^2 \hbar\omega q}{(\varepsilon_{k+q} - \varepsilon_k)^2 - \hbar^2 \omega_q^2} \end{split}$$

ただし、 $\hbar\omega_{-q} = \hbar\omega_{q}$ や、エネルギー保存則を用いた。

2 電子のエネルギー授受の上限の目安は Debye エネルギー $\hbar\omega_{\rm D}$ であり、 $|\varepsilon_{k+q} - \varepsilon_k| \ll \hbar\omega_{\rm D}$ なる2 電子については、

$$\Delta E \simeq -\frac{2|Mq|^2}{\hbar\omega q}$$

となり、有効相互作用が引力となり得ることを示す。電子-格子相互作用の考察から、|q|の 小さい領域では、実は、|Mq|²/ħωq が、ほとんど q 依存性を持たないことがわかっている。 つまり、この引力相互作用は、等方的な短距離引力であることが示唆される。

What is the origin of metallic superconductivity -BCS prediction and theory-

 $T_c \equiv \theta_D \theta_D x p(-\frac{1}{\lambda})$

Lattice vibration frequency being higher makes T_{c} higher

Pictures from Nobelprize.org

From left side

John Bardeen, Leon N. Cooper,

J. Robert Schrieffer

映像:日立サイエンスシリーズ,超 より 伝導

BCS Theory

A number of Electron Pairs, which are mediated by the electron-lattice interaction, can coherently propagate without resistance at low temperatures. This pair is called Cooper pair.

BCS theory predicts the many-body ground state for the superconducting state described by the following wave function as

$$\psi_{BCS} = \prod_{k} (u_{k} + v_{k} c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger}) |0\rangle \qquad (1)$$

The BCS Hamiltonian is given by

$$\mathcal{H} = \sum_{k,\sigma} \left(\frac{\hbar^2 k^2}{2m} - \mu \right) c_{k\sigma}^{\dagger} c_{k\sigma} - \sum_{k,k'} V_{kk'} c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} c_{-k'\downarrow} c_{k'\uparrow}$$

Using (1), by minimizing the expectation value of the above BCS Hamiltonian, the parameters u_k and v_k are expressed as follows;

$$u_k^2 = \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right), \quad v_k^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right) \text{ with } E_k = (\xi_k^2 + |\Delta_k|^2)^{1/2}$$

Here note that $\Delta_k = \langle c_{-k\downarrow} c_{k\uparrow} \rangle$ based ion the mean field approximation and when it is assumed as *k*-independent, we get the following relations using the density of state at the Fermi Level, N(0) and the Deby frequency, ω_D .

$$1 = \frac{1}{2}N(0)V\int_{-\hbar\omega_{\rm D}}^{\hbar\omega_{\rm D}}\frac{1}{\sqrt{\xi^2 + \Delta^2}}\,\mathrm{d}\xi \qquad \Delta = \frac{\hbar\omega_{\rm D}}{\sinh\left(\frac{1}{N(0)V}\right)} \approx 2\hbar\omega_{\rm D}\exp\left(-\frac{1}{N(0)V}\right)$$

$$|\varDelta| = v_0 \sum_{k} \frac{|\varDelta|}{2E_k} \tanh(\frac{E_k(T)}{2k_BT})$$

Possible SC order parameters and their spin-state

A Route to enhance T_{c}

The BSC theory based on the electron-lattice vibration interaction derived the formula for the onset of superconductivity given by

 $T_c \sim \hbar \omega_0 \exp \left[-\frac{1}{N(0)} V \right]$

In order to enhance T_c , we may look for materials in which either Θ_D or N(0) or V is larger than existing superconductors.

However, even if $\hbar \omega_0 = \Theta_D$ becomes larger, T_c is not always increased more as evidenced from the following data

	臨界温度(K)	デバイ温度(K)						
Be	0.03	1390						
Al	1.16	428						
Ga	1.08	325						
Sn	3.72	200						
Pb	7.19	105						

表 5-1 超伝導元素の臨界温度とデバイ温度.

What about increasing *N*(0) term ?

History of $T_{\rm C}$ for BCS superconductors

Discovery of MgB_2 with a highest T_c =39 K due to the BCS mechanisim

High-frequency optical mode of Boron lattice vibration

Light mass (B) 2D honey-comb lattice reasonable density of states are the causes to enhance the highest T_c =39 K Y. Kong et al., PRB 64, 020501(R) (2001).

A. Y. Liu et al., PRL 87, 087005 (2001).

optical E_{2g} mode is strongly coupled with electron Cal. $\omega_{\rm D}$ = 670~860K λ = 0.73~1 NMR : ω~700K λ~0.87

Cupper Oxides High-T_c superconductor

"Possible High- T_c Superconductivity in the Ba-La-Cu-O System"

Muller 1987 Novel Prize in Physics

Bednorz

"Possible... " ---> Evidence !

High-*T*_c **Copper Oxides superconductors**

La_{2-x}Sr_xCuO₄ , T_C~40K YBa₂Cu₃O_{7-x} , T_C~90K

HgBa₂Ca₂Cu₃O_{6-y} A highest $T_c \sim 163$ K under pressure

Problem 8. We consider a system with electron pairs of R. The superconducting (SC) model Hamiltonian is described as the sum of kinetic term (H_0) and an attractive potential term (V) as follow;

$$H = H_0 + V \text{ where the respective matrix elements are defined as follows;}$$

$$< \{k_i \uparrow, -k_i \downarrow | H_0 | k_i \uparrow, -k_i \downarrow > \equiv 0 \quad U_{ij} = \langle \{k_i \uparrow, -k_i \downarrow \} | V | \{k_j \uparrow, -k_j \downarrow \} \rangle = -\delta$$

A trial wave function consisting of the Cooper pairs for the above SC model Hamiltonian is given by the total sum of the wave function of electron pair as follow;

$$\Psi_{g} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} c_{i} \{k_{i} \uparrow, -k_{i} \downarrow\} \text{ Then, from hint !}$$

$$H \Psi_{g} = E \Psi_{g}$$
write down the matrix of this Hamiltonian. Furthermore,
using the following theorems for the N-roots (E₁, E₂, -----
-, E_N) on this obtained matrix with the equations of
$$E_{i} = -\delta N$$

$$\sum_{i}^{N} E_{i} = -\delta N$$
Answer an eigen energy of this model BCS state

$$\sum_{i}^{N} E_{i}^{2} = (\delta N)^{2}$$
and its eigen function.

レポート8

i

N個のクーパー対がある系を考える。系のハミルトニアンは、運動エネルギー(H_0)と引力相互作用(V)の和として

$$H = H_0 + V$$

$$< \{k_i \land, -k_i \downarrow | H_0 | k_i \land, -k_i \downarrow \geq = 0$$

$$U_{ij} = \langle \{k_i \uparrow, -k_i \downarrow\} \mid V \mid \{k_j \uparrow, -k_j \downarrow\} \rangle = -\delta$$

と書けるとする。この系の永年方程式は

$\begin{vmatrix} -\delta - E \\ -\delta \\ \vdots \\ -\delta \end{vmatrix}$	$-\delta$ $-\delta - E$ \vdots $-\delta$	•••	$-\delta$ $-\delta$ \vdots $-\delta - E$	=0,となる。	この行列式の N個の根に関 する定理:	$\sum_{i}^{N} E_{i} = -\delta N$ $\sum_{i}^{N} E_{i}^{2} = (\delta N)^{2}$
---	--	-----	--	---------	---------------------------	--

を使って、この系の基底状態(BCS状態)の固有 エネルギーE_aをもとめ、固有関数は

$$\Psi_{g} = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \{k_{i} \uparrow, -k_{i} \downarrow\}$$

となることを示せ。

おわり