相関電子系超伝導の多様性(I)

Diversity of Correlated Superconductivity (I)

- ・重い電子系 (Heavy-electrons systems)
- ·有機伝導系 (Organic Systems)
- ·銅酸化物系 (Copper Oxides systems)
- ・鉄ニクタイド系 (Iron Pnictides systems)
- ・最近の話題

① ハバードハミルトニアン

$$\mathcal{H} = -t \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$
② $t - J$ ハミルトニアン

$$\mathcal{H} = -\tilde{t} \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + J \sum_{ij} S_i \cdot S_j$$
③ 重い電子系ハミルトニアン

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k a_{k\sigma}^{\dagger} a_{k\sigma} + J_K \sum_{l} S_l \cdot \vec{\sigma}_l^c + J_{RKKY}(R_{ij}) \sum_{ij} S_i \cdot S_j$$

 $Pd(dmit)_2$ is an electron acceptor and gives salts $A[Pd(dmit)_2]_2$ with monovalent cation, A^{+1} .

超伝導一磁性相図

第1図 (BEDT-TTF)₂Xの構造. BEDT-TTF分子に は両側に4個ずつ水素が付いている.

第一部 超伝導のフロンティア | 44

第2図 (BEDT-TTF)₂X の超伝導相,絶縁体相を説 明する概念的相図.

強相関電子系のモデルハミルトニアン

$$\mathcal{H} = -t \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

(2) $t - J$ ハミルトニアン
$$\mathcal{H} = -\tilde{t} \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + J \sum_{ij} S_i \cdot S_j$$

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k a_{k\sigma}^{\dagger} a_{k\sigma} + J_{\mathrm{K}} \sum_l S_l \cdot \vec{\sigma}_l^c + J_{\mathrm{RKKY}}(R_{ij}) \sum_{ij} S_i \cdot S_j$$

Novel Phase Diagram of Antiferromagnetic Order and Superconductivity in Copper Oxides

Towards understanding a concept for high-T_c cuprate

$$H = \sum_{\langle i,j \rangle} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} + \sum_{i} J_{ij} S_{i} \cdot S_{j}$$

In strong coupling regime of electron correlation (U > 8t): Doped Mott Insulator is the superconductor, leading to the high T_c superconductivity mediated by the AFM super-exchage interaction!!

dSC

O AFM + dSC

強相関電子系のモデルハミルトニアン

① ハバードハミルトニアン

$$\mathcal{H} = -t \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$
② $t - J$ ハミルトニアン

$$\mathcal{H} = -\tilde{t} \sum_{ij\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + J \sum_{ij} S_i \cdot S_j$$
③ 重い電子系ハミルトニアン

$$\mathcal{H} = \sum_{k\sigma} \epsilon_k a_{k\sigma}^{\dagger} a_{k\sigma} + J_K \sum_{l} S_l \cdot \vec{\sigma}_l^c + J_{RKKY}(R_{ij}) \sum_{ij} S_i \cdot S_j$$

Heavy-electrons Compounds

Heavy-electron Superconductivity

around quantum critical point for AFM

			ŀ	Pei	io	dic	Та	ble	e fo	or a	ato	m	nic	el	en	nei	nt			
Нт					(3	底状	態の中	■性原	(子の	外殼	化于- 1	记证	2)						■ He	^ ر
1 #		原	子およ	たびイ	オン	の電子	配置を	と示す	記号	につい	っては								1.23	
Ll ³	Be ¹	すら	ってのわてい	り初歩	®的な 文字	尿于物 8、12、	<u>川</u> 雪つ d…し	つ歌科 よたを	国に	おいて とする	、並へ 。軌道		B2	C⁵	N	17	0 ⁸	F ⁹	Ne	10
21	2 * 2	が 角 の	モーン	イント の数空	~,1, (1,1)。	- , をも 道の主	って∨ :冊子#	、る11 かを元	「子を 「子を」	- ・ 示す. 右周]	文字 ·の数		2 s² 2p	25 ² 2	2p ² 2	1 ² 2p ³	2s²2p	• 2;22;	2 ⁵ 25 ²	2p ⁶
Na ¹¹	Mg ¹²	- 7 -	XI 801 °		- 100 q¥L		<u>-</u>		• • •	· [] / []		`	Alto	Sil	P	15	S ¹⁶	CIT	Ar	18
34	3 5 2		3 d	Tra	ans	itio	n e	lem	nen	ts			34231	3s²3	3p ² 3.	s²3p³	3 s² 3p	4 3s ² 3	p ⁵ 3s ²	3p ⁶
K19	Ca ²⁰	Sc ²¹	Ti22	V ²³	Cr24	Mn ²	5 Fe ²⁶	Co ²	[†] Ni ²	• Cu	²⁹ Zr	30	Ga ³¹	Ge	³² A	\$ ³³	Se ³⁴	B r ³⁵	Kr	36
4;	43 ²	3d 43 ²	3d² 4s²	3d ³ 4s²	3d ⁵ 4s	3d ³ 4s²	3d ⁶ 4s ²	3d7 4s²	3d ⁸ 4s ²	3d' 43	° 3d 4s	2 10 2	4324)	-) 4s ²	4p ² 4	s²4p ³	4s²4p	• 4 ₅ 24	p ⁵ 4s ¹	14p6
Rb37	Sr ³⁸	¥39	Zrio	ND41	Moʻ	² Tc ¹³	Ru44	Rh	⁵ Pd ⁴	16 Ag	*" C	d ⁴⁸	in ⁴⁹	Sn	⁵⁰ S	b ⁵¹	Te ⁵²	150	Xe	54
5s	5 s ²	4d 53²	4d² 5s²	4d ⁴ 5s	4d ⁵ 5s	4d* 5s	4d' 5s	4d ⁸ 5s	4d" -	° 4d1 5s	• 4a 5s	[10 2	5s²5	p 5s2	5p² 5	s ² 5p ³	5s²5;	o* 5s²5	p ⁵ 5s ²	²5p
Cs55	Ba ⁵⁶	La ⁵⁷	Hf72	Ta ⁷³	W74	Re ⁷	S Os 76	1 1r77	Pt7	^s Au	79 H	8 80	T181	РЬ	⁸² E	31 ⁸³	P0 ⁸⁴	At ⁸⁵	Rr	1 ⁸⁶
6 1	6s²	5d 61 ²	4∫ 5ď ∠ 6≠	4f F	lar	e ea	rth	ele	eme	ents	5 6.	110 5 ²	6s²6	p 6s²	6p² e	∂s²6p¹	6s²6j	o ⁴ 63 ² 6	p ⁵ 6s	26p
Fr ⁸⁷	Ra ⁶⁸	Ac ⁸⁹		- 58	-59			67	E63	C 464	T 65	ln.		4-67	E -68	Iτο	-69 N	(1)70	171	7
73	7s²	6d 7 3²	4	e	f ³	NG~ 1 4f1	*/* */* 4	smor ly ^s	4f ¹	Ga⊶ 4f [†] 5d	4f ⁸ 5d	4f	10	וייזי וייזי	4f ¹²	4/	13 4	10 1711	4f ¹⁴ 5d	
			С Т - ба	h ⁹⁰ P 5 1 ² 6	s" a ⁹¹ f ² d	03- 19 092 1 5f ³ 9	οσ•ια Νρ ⁹³ Γ 5/1 5	ол. 2П ₈₄ 2	os- Am ⁹⁵ 5∫ ¹	55 ⁻ 5 <i>f</i> 1 6d	Bk ⁹⁷		198	E s 99	Fm ¹	⁰⁰ M	d 101 P	~ 10 ¹⁰²	Lr ¹⁰³	;
			74	² 7	s ²	73 ² 7	7,12 7	rs ²	7s²	7 s ²	ł	1				1				Ĩ

Effective atomic potentials for Ce and U

$$\begin{bmatrix} -\frac{d^2}{dr^2} - \frac{2}{r}\frac{d}{dr} + U(r) + \frac{l(l+1)}{r^2} \end{bmatrix} \psi = k^2 \psi,$$
$$U(r) = \frac{2m}{\hbar^2} V(r),$$
$$\varepsilon = \frac{\hbar^2 k^2}{2m}.$$

Anderson Hamiltonian in Strongly Correlated systems

$$\mathscr{H} = \sum_{k} \sum_{\sigma} \varepsilon_{k} c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_{\sigma} E_{f} f_{\sigma}^{\dagger} f_{\sigma} + U n_{f\uparrow} n_{f\downarrow}$$

$$+ \frac{1}{\sqrt{N_0}} \sum_{k} \sum_{\sigma} \left(V_{fk} f_{\sigma}^{\dagger} c_{k\sigma} + V_{kf} c_{k\sigma}^{\dagger} f_{\sigma} \right)$$

第2図

反強磁性状態における強相関金属の遍歴・局在二重 性.弱相関金属・局在スピン系との状態密度による対 比(A サイト, *T*≪*T**).

) = I EA OR AL + JK Z E. S. + JRKKY ZI, S. S. Jĸ~ 1111/U J → large (Coulomb repulsion) T>JK/RB lacel N (E) oment Eł ٤_{Fi} T & Ju/Ro coherent band (Kondo Singlet) N(E) t kotk E4f ę

Characteristic Energy Scales in Heavy- electrons Systems

Magnetic and transport behaviors in various Ce (4f1) compounds

Magnetic susceptibility

Resistance

Temperature (K)

100

	$T_c(\mathbf{K})$	crystal structure	nucleus	$1/T_1$	K^*	parity	symmetry
$CeCu_2Si_2^{17,22-25}$	$\sim 0.7~{ m K}$	$tetragonal(ThCr_2Si_2)$	Cu, $Si^{26, 27}$	T^3	decrease	even	d
$CeCoIn_5^{20,21}$	$\sim 2.3~{ m K}$	tetragonal(HoCoGa ₅)	Co, In^{28})	T^3	decrease	even	d
$CeIrIn_5^{(20,21)}$	$\sim 0.4~{ m K}$	tetragonal(HoCoGa ₅)	$In^{29)}$	T^3	-	-	-
$UBe_{13}^{18, 19)}$	$\sim 0.9~{ m K}$	cubic(NaZn ₁₃)	$Be^{30)}$	T^3	-	-	-
$UPt_3^{18, 19)}$	\sim 0.55 K	hexagonal	$Pt^{31-34)}$	T^3	unchange	odd	. f
URu ₂ Si ₂ ^{18, 19)}	$\sim 1.2 \text{ K}$	tetragonal(ThCr ₂ Si ₂)	Ru, Si ^{35, 36)}	T^3	unchange	odd	
UNi ₂ Al ₃ ^{18, 19)}	$\sim 1 \text{ K}$	hexagonal	A1 ³⁷⁾	T^3	unchange	odd	p or f
$UPd_2Al_3^{18, 19)}$	$\sim 2 \text{ K}$	hexagonal	Pd, Al ^{38, 39)}	T^3	decrease	even	d
$CeCu_2Ge_2^{40}$	~ 0.6 K ($P \sim 7.6$ GPa)	tetragonal(ThCr ₂ Si ₂)	-	-	-	-	-
$CeIn_{3}^{41-45}$	$\sim 0.2 \text{ K} (P \sim 2.5 \text{ GPa})$	$cubic(AuCu_3)$	$In^{46)}$	T^3	-	-	-
$CePd_2Si_2^{41, 42, 47}$	~ 0.4 K ($P \sim 2.5$ GPa)	tetragonal(ThCr ₂ Si ₂)	-	-	-	-	-
$CeRh_2Si_2^{48,49}$	$\sim 0.2 \text{ K} (P \sim 1.0 \text{ GPa})$	tetragonal(ThCr ₂ Si ₂)	-	-	-	-	-
$CeRhIn_5$ ^{50, 51)}	\sim 2.1 K ($P\sim\!\!1.6$ GPa)	$\rm tetragonal(HoCoGa_5)$	$In^{52, 53)}$	T^3	-	-	-
High- T_c cuprates	~ 140 K (max)	perovskite	Cu, O	T^3	decrease	even	d
$Sr_2RuO_4^{54,55}$	$\sim 1.5~{\rm K}$	perovskite	Ru, O	T^3	unchange	odd	p

Table I. Superconducting characteristics in most heavy-fermion systems along with high- T_c cupper oxides and Sr₂RuO₄. Note that the nuclear relaxation rate $1/T_1$ reveals no coherence peak just below T_c , followed by the T^3 dependence without an exception. K^* denotes the spin component of Knight shift below T_c . In this context, all unconventional superconductors discovered to date possess the line-node gap on the Fermi surface regardless of either spin-singlet d wave or spin-triplet p-wave.

文献: JPSJ, 74 (2005) 186-199."Unconventional SC in HFs"

Pressure-induced phase diagrams of AFM and SC

重い電子系における高温超伝導現象

High-*T*_c phenomenon in Heavy-electron system

Present Status of SC Research Anniversary Since its Discovery

Diversity of Heavy-electron Superconductivity due to Correlation effect

Valence (electron-transfer) fluctuations induced SC CeCu₂Si₂

Repulsive interaction U_{fc} between 4f- and *c*-electrons plays key-role for valence fluctuations emerging, leading to the onset of a maximum T_c =1.6 K around 4GPa. A possibility of valence -fluctuation mediated strong-coupling SC.

K. Fujiwara et al., JPSJ. 77, 123711(2008).

High-*T*_c SC in (Ce,Pu)115 compounds

115系	<i>Т</i> _с (К)	
CeColn₅	2.3 (d波)	
CeRhIn ₅ (AF: <i>T</i> _N =3.4K)	<mark>2.1 (</mark> d波) (<i>p</i> =2.1GPa)	
CelrIn₅	0.4 (d波)	
PuCoGa₅	18.5	
PuRhGa₅	8.6	

M. Yashima et al ., Phys. Rev. B 79, 214528 (2009).

- S. Kawasaki et al., PRL 96, 147001 (2006).
- G.-q. Zheng et al., PRL 86, 4664 (2001).
- T. Muramatsu et al., Physica (Amsterdam) 388C-389C, 539 (2003).

Characteristics of Magnetic Fluctuations

J. L. Sarrao et al., Nature 420, (2002) 297.

Magnetic criticality and SC energy gap

$2\Delta_0/k_{\rm B}T_{\rm c}$

Almost localized fluctuations-induced SC Characteristics

Effective Fermi temperature T^* vs T_c

Crystal electric field and Kondo temperature

$$T_{K} = D_{0} \exp(-1/J_{0})(D_{0}/\Delta_{1})^{2}$$
$$J_{0} = |J_{ex}\rho(E_{F})/N|$$
$$J_{ex} \sim - V_{cf}^{2}/U$$

K. Yamada, K. Yosida and K. Hanzawa Comments on the Dense Kondo State Prog. Theor. Phys. 71, 450-457 (1984)

(meV)	CeCu ₂ Si ₂	CeRhIn ₅	CeCoIn ₅	CelrIn ₅		
Δ_2	31	24	25	29		
Δ ₁	12	6.9	8.6	6.7		
Quasi-elastic width (~T _K)	1	2.3	6.6	8.7		

Inelastic Neutron Scattering: A. D. Christianson et al., Phys. Rev. B 70, 134505 (2004)

(a)-(d) 電気多極子(J=4), (e)-(g)磁気多極子(J=4)5/2). 波動関数の形状は電荷分布を, カラーマップは 磁荷分布(N極:赤,S極:青)を表わす.

Overlooking of Heavy-electron Superconductivity

	Heavy electrons systems	χ _q ↑
Mother compound	Magnetic order, multipole order, quantum critical phenomena	
Evolution of phase	Pressure, Chemical substitution	
Electronic state	Multi-bands	Q q
SC symmetry	<i>d</i> -wave, <i>f</i> -wave, extend <i>s</i> -wave	$\chi''(\omega) = \Sigma_q \chi''_q(\omega)$
Pairing interaction	Fluctuations of Magnetic (Spin density), Valence, Multipole, Orbital	PuCoGa ₅ <i>T</i> _c =18.5 K
$\begin{array}{c} \circ & \circ \\ f \downarrow & \uparrow \end{array} \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) \xrightarrow{r} \\ \bullet \\ \bullet \\ \downarrow \\ \uparrow \end{array} \left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \right) \xrightarrow{r} \\ \bullet \\ $		556v1

First principle calculation with spin-orbit interaction \rightarrow Tight binding effective model \rightarrow Introduction of *f*-*f* electrons interaction (*U*, *U'*, *J*, *J'*)

ω

 \rightarrow dealing with magnetic order and multipole order under the multiband including heavy and light mass Fermi surfaces,

 \rightarrow understanding a possible onset of SC mediated by either wave number dependent fluctuations and almost localized fluctuations

Reaction mechanisms of the Mn₄CaO₅ cluster of

photosystem II in PLANT

Development of efficiency or the figure of merit in the reaction process of photo-catalysis is the intensive research subject of matter science

Honda-Fujishima effect : visible light can decompose water into oxygen and hydrogen in the electrochemical cell in which TiO₂ electrode is connected with a platinum electrode.

Unfortunately, the industrial mass-product is not available yet. It is highly desired to create hydrogen as clear energy source by means of this photo-catalysis function. We may call this TiO_2 as an uncorrelated photo-catalysis matter. The stabilization of surface-associated intermediate Mn^{3+} species is brought about by the formation of N–Mn bonds in which the inorganic Mn-oxide hybridizes with the coordination of organic amine. Then, the charge disproportionation is inhibited to lower the overpotential for water oxidation by MnO₂.

Summary

The many-body electron correlation in condensed matter is a key-ingredient for creating the emergent phases and functional materials.

The local electron correlation may be relevant with the emergent functions in nonperiodic complex systems such as metal catalyst, photo-catalysis reaction in plant and even biological matter with transition-metal elements.